
UNIVERSITY OF PERADENIYA

COMPUTER ENGINEERING

Software Engineering Project

CO 328

AN ONLINE PERSONALIZED ADVERTISEMENT
PLACING PLATFORM FOR LOCAL SHOPS

STUDENT ID :
E/14/237 Pankayaraj. P

E/14/302 Hiruna Samarakoon
E/14/390 Mabeesha Wijekoon

E/14/222 Rahal Medawatte

0

Contents

1 ABSTRACT 2

2 INTRODUCTION 2

3 MOTIVATION 2

4 INTERFACE DESIGN 3
4.1 Models(schema) and their relationships to each other 3
4.2 Design . 3
4.3 Development . 6
4.4 Django Testing . 6

4.4.1 Models testing . 7
4.4.2 Forms Testing . 9
4.4.3 Views Testing . 10
4.4.4 Admin Dashboard . 13

4.5 Security . 14
4.5.1 Cross site scripting (XSS) protection 14
4.5.2 Cross site request forgery (CSRF) protection 15
4.5.3 SQL injection protection . 15

4.6 System testing . 15
4.7 GUI testing(For Different Resolutions) 15

5 ALGORITHM DESIGN 16
5.1 Suggested algorithm . 16

5.1.1 State Representation . 16
5.1.2 Algorithm Description . 17
5.1.3 Agile Development during the algorithm phase 20
5.1.4 Test . 21

6 REFERENCES 25

1

3

1 ABSTRACT

The concept behind this project is to design and implement a web page to connect the
local customers with the local shop owners by building a platform for advertisements.
This project is build on the basis of providing an interactive interface for both users
and shop owners with the ability to convey the information about them as much as
possible while focusing also on the development of a capable algorithm to capture
the preference of the customer dynamically.

2 INTRODUCTION

When it comes to suggesting local shops to local customers there is a general lesser
degree of personalizing when it comes to the existing online platforms due to their
lack of flexibility in allowing the shops to maintain an informative profile and the
absense of proper algorithms to capture the customer’s preferences. So as for the
first part of the project is concerned with the creation of an interactive interface in
order to make the end product accessible and easily understandable for the customer
while letting the user have a flexible customization. Even with a better design and
accessibility with the lack of personalizing the app is only as good as an advertising
page in a newspaper. Thus the proper working of the algorithm with it’s ability to
maintain an computational efficiency for all of it’s online updates becomes a vital
bottleneck for the product. Thus the second part of the project is focused on the
development of the algorithm and the challenges faced during the process.

3 MOTIVATION

Even at a time where everything is one click away, information of products, deals
and shops are scattered everywhere. Some are in social media pages, some are on
their websites and some information are physically inside the shops. Due to these
reasons, most of the valuable information go unnoticed. So why not make every
information available at one place?

2

4.2

4 INTERFACE DESIGN

4.1 Models(schema) and their relationships to each other

4.2 Design

The entire system was designed using the following diagrams.

The use-case diagram: Mainly there are three actors in the system

1. Users (Customers)

2. Shop owners

3. Site Maintainers

We identify each of these actors/roles have different set of rules in the system. The
following use-case diagram shows the interactions are done with the system.

3

4.2

The site map gives the overall view of the website

4

4.3

The sequence diagram

Some of the design patterns used in the development

1. Singleton Pattern.

2. Factory Pattern.

3. Abstract Factory Pattern etc.

The concepts in the above said design patterns were used in developing our system.
For an example, the model ZipCode’ was implemented as a single instance class,
thus the idea singleton pattern was used.

Since the versatility of the factory pattern concept is higher, it was the major design
pattern behind most of the structure.

Even though the design patterns were not followed in strict order, it made the
development easier and debugging efficient.

5

4.4

4.3 Development

A better diagram at: https://drive.google.com/file/d/1vT6Cpih0oYaRTugktVQt78fjJQs_
6Uy-/view?usp=sharing

4.4 Django Testing

Since Web Server is written in django it is mostly django testing
There are three important aspects in django structure

1. Views (functions)

2. Models (database)

3. Forms (html forms)

Testing was carried under above three categories separately, interactively covering
the three subparts of testing

1. Unit test Regression test

2. Integration test

6

4.4.2

For all tests the expectation is that the result is either expected, unexpected, or an
error. Here we have tested the code of our design specifications, not the behaviour
of the underlying framework and other third party libraries. For an example it is
not needed to verify field type as Django validates the field type correctly.

4.4.1 Models testing

In testing environment all the models were created with dummy data and tested for
create object, fields’ length, one to one, many to many.. relationships, object name,
absolute URL mapping, update object and delete object

7

4.4.2

8

4.4.3

4.4.2 Forms Testing

9

4.4.3

4.4.3 Views Testing

To validate view behaviour we use the Django test Client. This class acts like a
dummy web browser that we can use to simulate GET and POST requests on a
URL and observe the response. Almost everything about the response, from low-
level HTTP (result headers and status codes) through to the templates using to
render the HTML and the context data passing to it. Also can see the chain of
redirects (if any) and check the URL and status code at each step. This verifies that
each view is doing what is expected.

10

4.4.3

Views restricted to logged in user testing (auth login testing)

11

4.4.4

Other than these testing, manual testing were done at lots of times. Sometimes it
was easier to test without written code, for an example when the customer login via
social media authentication, manual testing was used.

12

4.5

4.4.4 Admin Dashboard

Django admin panel is a handy tool to test and debug. For an example adding
zip codes (which is a one time objective) was tested for the correct format of the
zipcodes using admin panel. It also gives a lot of information about the structure
of the site.

13

4.5.2

4.5 Security

Since the time was limited for our project, we did not go detail into security. But
there are minor implementations done in the security arena with the help of Django
implementation.

4.5.1 Cross site scripting (XSS) protection

XSS attacks allow a user to inject client side scripts into the browsers of other users.
This is usually achieved by storing the malicious scripts in the database where it
will be retrieved and displayed to other users, or by getting users to click a link
which will cause the attacker’s JavaScript to be executed by the user’s browser. So,
instead of explicitly using custom made template, we used Django template thus it
was avoided.

14

4.7

4.5.2 Cross site request forgery (CSRF) protection

CSRF attacks allow a malicious user to execute actions using the credentials of an-
other user without that user’s knowledge or consent.

Django has built-in protection against most types of CSRF attacks, providing you
have enabled and used it where appropriate

4.5.3 SQL injection protection

SQL injection is a type of attack where a malicious user is able to execute arbitrary
SQL code on a database. This can result in records being deleted or data leakage.

Django’s querysets are protected from SQL injection since their queries are con-
structed using query parameterization

4.6 System testing

The full system was tested after the above tests and it involved automated and
manual testing. System testing was reviewed under following categories,

1. User Interaction

2. Database Interaction

3. Network performance and Web server

each of the above categories had an acceptable result.

4.7 GUI testing(For Different Resolutions)

Gui Testing was done manually for the most common resolutions of devices that are
currently in use and the adjustments were made.

Tested Resolutions - 360x640, 411x731, 411x823, 320x568, 375x667, 414x736, 375x812,
768x1024, 1024x1366

15

5.1.2

5 ALGORITHM DESIGN

5.1 Suggested algorithm

The task of the algorithm is to find the next shop to suggest for the user on his time
line based on his past preferences. Users preferences will be captured by the ratings
he give for a shop when it is shown in his time line and by the fact weather he marks
some shop as visited. Most part of the final suggested algorithm follows the 2003
paper named Bayes Meets Bellman: The Gaussian Process Approach to Temporal
Difference Learning [1]. The idea of Markov Decision Processes was used to design
the algorithm. The idea is to represent the shops that are supposed to be suggested
next as the possible actions leading to the next states and consider the currently
displayed shop as the current state. The rating and the fact user marks some shop
as visited is modified as a rewards. This now the problem can be modified into a
Markov Decision Process for each user.

5.1.1 State Representation

The state representation of a shop was made to primarily capture it’s geographical
location and the property of the shop. Thus a trade off is made between these two
vectors with more priority given towards the geographical location. With i > j

StateV ector = i ∗ LocationV ector + j ∗ CharactersiticV ector

Even though the idea of using all the shops that are available in the database as the
adjacent states sounds profound it attracts a load of computational resources and
optimization which can be expensive given this is a product aimed for local users.
Thus only having the adjacent shops within a radius as the adjacent state space for
a user reduces the complexity of the problem while not compromising the accuracy.
Thus the total state space is defined as the shops around a certain radius around
the user.

Now in a given state space we select the states with the lowest euclidean distance
as the adjacent state space. And to avoid the states getting stuck at a particular
position a random state is selected from the state space as an adjacent state.

Distance = (CurrentState− State)2

AdjucentState = argsort(Distance)[: n] +RandomState

16

5.1.2

5.1.2 Algorithm Description

A Markov Reward Process is made of a tuple S, R, γ which is State, Reward, and
decay parameter. A value function V for a state s is defined as

V (s) = E(
∞∑
t=0

γt ∗R(st, st+l) | s0 = s)

where the expectation is taken over the policy π based state transition pπ(st+1 | st).
The action that leads to a state with the most V is selected in a solved Markov
Decision Process. There are several ways to obtain the solution, optimal policy π∗.
One such method is to use a value function estimator that is trained such that when
given a particular state representation it spits out the corresponding value function.
Gaussian Process is the value function estimator used in our case because of the
confidence interval it gives apart from the value estimate.

The training data is provided to the estimator by TD(0) update as per the paper[1]
which is

17

5.1.2

v(st) = vt + γ ∗ δt
δt = rt + γ ∗ v(st+1)− v(st)

rt = R(st+1, st)

The TD(0) rule can be written as a matrix format as follows

H =


1 −γ 0 . . . 0
0 1 −γ . . . 0
. .
0 0 . . . 1 −γ


Rt−1 = HtVt +Nt−1

Nt−1 = noise

Then a Gaussian process can be fit as mentioned in the paper [1] for the equation
as follows

[
[Rt−1
V (s)

]
∼ N

[
0
0

]
,

[
HtKtH

T
t + Σt−1 Htkt(s)

(Htkt(s))
T k(s, s)

]
where k(s, s), kt(s), Kt are kernel dependent functions as defined in the paper [1].Due
to the complexity of the Gaussian Process to be used as it is the paper [1] suggests
an online algorithm which performs at O(n2) compared to the O(n3) complexity the
original performs at. To reduce the no of states that are involved in the estimation
process it uses a sparsification test where it takes the least square solution for the
Hilbert space transformation of the new state from the available states (also as a
Hilbert space transformation) and if the error in the estimation is lesser than than
a threshold then it let them represent the new state. Or else it adds the new state
to the existing states. The least square solution and error is as follows

argmina(a
TKt−1a− 2aTkt−1(st) + ktt)

error = ktt − kt−1(st)Tat

Then as per the respective parameters mentioned in the paper for the case of error
being less than the threshold

18

5.1.3

Ht =

[
Ht−1

at−1 − γ ∗ aTt

]
αt = αt−1 + ct/st(∆k

T
t−1αt−1 − rt−1)

Ct = Ct−1 + 1/s(ctc
T
t)

For the case of error being less than the threshold

Ht =

[
Ht−1 0
aTt−1 −γ

]

αt =

[
αt−1 + ct/st(∆k

T
t−1αt−1 − rt−1)

γ/st(∆k
T
t−1αt−1 − rt−1)

]

Ct =

[
Ct−1 + 1/s(ctc

T
t) γ/st(ct)

γ/st(ct)
T γ2/st

]
Then the value function and the confidence interval can be found in O(n2) as follows

valuefuncton = kt(s)
Tαt

confidenceInterval = kss − kt(s)TCtkt(s)

19

5.1.4

5.1.3 Agile Development during the algorithm phase

When we started the problem we in order to make it an interactive real time solution
we had to go towards reinforcement learning. Having to decide with only the current
shop user is viewing did not contradict with the reality. Thus we choose t model it
as Markov decision process. Initially we choose TD(λ) method with tabulating the
value functions for all states and updating by the running average. Even though this
method guaranteed a convergence in proof we needed a tabulation of every state. So
the memory grew along with the no of states. Thus we had to find a value function
approximation even though we were aware of them no guaranteeing convergence to
an ultimate optima. We choose to approximate the function with Gaussian process
along with TD(λ) updates. The availability of a confidence interval estimate from
the Gaussian Processes along with a value function estimate prompted us to use
it. But the we faced the issue with we having to computationally having to do the
inverse of a large state sized matrix every time step. So we after a literature review
we found the 2003 paper which proposed an algorithm which not only bring the
computation down but also reduces the complexity of the memory space as much
as we want by letting us pick a threshold which would let us approximate a given
state by using the already met states. Since is gave us a way to do online update
and also to sparsify we choose this as the method as our long term solution for the
given problem.

20

5.1.4

5.1.4 Test

In order to test the algorithm in the absence of real time data we have decided to test
it on a simulation. We choose total adjacent states as 4. Then they were mapped
into a 2D grid and then the tests were run on that grid. Now an example of zero
indexed 10*10 grid is considered.As an extreme case it was assumed that the user
kept on avoiding the ratings until he visits the shops at position (5, 8) and (7,2).
Thus the reward system is initially modified as give a reward of 1 at those 2 states
and 0 elsewhere.

And the value function result is obtained as follows.

The same system was now made to penalize itself with -1 every time it didn’t give

21

5.1.4

the user what he wanted and was given a 0 reward when it got to the user’s wanted
stage.

And the results are as follows.

Important fact to observe in are the peaks of the graph and the dynamics of the
graph leading to those peaks. In both graphs the algorithm peaked at the customer’s
favoured places and near (0, 0) when customer doesn’t have any favourite it fell down
and gradually increased towards the favoured places. According to the results we

22

5.1.4

can interpret the systems work as follows. That is when the user is in a random shop
the algorithm will maximize the value function and then climb towards the visited
shop. Thus the user can view advertisements from the similar shops and also the
new offer advertisements from the already visited shop. The value function at the
intermediate state of the crawling shows how it penalizes the undesired states that
are visited. Thus on the next stage it would explore more.

Furthermore in all the diagrams the scale of value functions doesn’t change by
a greater margin due to our usage of rewards < ‖1‖ . Thus the estimator can
adapt the change with ease when the user’s preference changes thus enabling to
add dynamics.Next if we assume that the user is giving ratings along a path and
visiting the above mentioned states. To simulate that scenario we let our grid
provide a reward of 5 for both visited states and then a reward of 0 for a cer-
tain path and -1 for the rest of the states and let the user start from (0, 0) state.

23

5.1.4

The value function we got was

It has made smaller spikes for the path we defined and larger spikes for the visited
shops. Thus capturing more information with ratings. In all these cases a higher
reward was proposed for visited shops in the hindsight that a customer would want
to know more of the new offers from the shops he has visited. These dynamics can
be varied given what is the priority and the reward can also be treated as a hyper
parameter of the algorithm. Furthermore in all the above processes the algorithm

24

6

represented the states by using 30-40 states instead of the whole 100 states thus
solving part of the third problem mentioned under the previous section

6 REFERENCES

1. Yaakov Engel, Shie Mannor, Ron Meir Bayes Meets Bellman: The Gaussian
Process Approach to Temporal Difference Learning (2003)

2. https://wsvincent.com/django-testing-tutorial/

3. https://docs.djangoproject.com/en/2.1/topics/auth/default/

25

