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Abstract

In recent years, extensive research has been carried out in the field of autonomous aerial
vehicle control, motivated by the rapid advancements in Machine Learning (ML). In
particular, Reinforcement Learning (RL) has gained immense interest in developing
control algorithms given its ability to learn useful behavior by dynamically interacting
with the environment, without the need for an explicit teacher. In this work, we examine
the use of RL methods on vision-based quadcopter control in both single-agent and
multi-agent simulated environments. Specifically, the DQN algorithm was investigated in
the single-agent setting and the MADDPG algorithm in the multi-agent setting. The
control task in each of these settings was to navigate through the environment by avoiding
obstacles to reach the specified goals. Thus, each of the aforementioned algorithms were
evaluated on their ability to perform this control task. Given the relatively short training
period (given the time constraints of the current semester), each algorithm was shown to
perform considerably well. Existing gaps within current implementations were identified
as well as potential improvements that can be carried forward to the next semester. The
necessary ground work required to implement these improvements were also completed.
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Chapter 1

Introduction

Quadcopters have become increasingly ubiquitous over the recent years. Given their
simplified construction, high maneuverability, and operational flexibility, the utilization
of quadcopters has diversified into numerous domains including military surveillance,
agriculture, geographic mapping, disaster management, wildlife conservation, etc. Such
application domains may involve dynamic, unstructured, and complex environment
settings. However, for quadcopters operating in such environments, defining which
control behaviour is optimal for a given situation, ahead of time, is impossible. Thus,
traditional control methodologies are often inadequate in such situations. As a result,
the focus of research has shifted to autonomous control as a potential alternative [2] [3].

The application of Machine Learning (ML) techniques for autonomous control has
gained significant attention in the research community. Notably, incorporating Reinforce-
ment Learning (RL) for autonomous control of aerial vehicles is currently an active area of
research. As opposed to using a predefined controller structure, RL enforces the learning
of optimal behaviour through trial and error, by allowing the agent (i.e. the learner) to
interact with the environment. Thus, RL is particularly useful in solving autonomous
control problems in dynamic, uncertain, and potentially complex environments [4] [5].
Moreover, RL can be applied in circumstances where information of the environment
and/or system dynamics is limited or unavailable [6].

As of now, comparatively, research on RL has been widely conducted within single-
agent domains. However, the use of multiple agents to improve performance in terms of
efficiency, reliability, effectiveness, etc., can be seen in emergent quadcopter applications
[7] [8] [9] [10]. In such multi-agent settings, the challenge lies with designing an algorithm
that encapsulates the added complexity of dynamic interactions between agents on top
of the existing dynamic behaviour seen in single-agent setups. This research has been
centered around this interesting challenge of successfully incorporating RL to address the
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quadcopter control problem in a multi-agent setting. That is, in situations with multiple
quadcopters operating within the same environment.

1.1 Background

1.1.1 Reinforcement Learning

In contrast to classical Machine Learning techniques, Reinforcement Learning approaches
attempt to learn useful behaviour through dynamic interactions between a "goal-directed"
agent (i.e. the learner and decision-maker) and the environment [6]. Reinforcement
Learning problems are formally modelled as Markov Decision Processes (MDPs) which
can be defined by a tuple M = ⟨S, A, T, R, γ⟩. Thus, as the agent explores potential
behaviour strategies, based on the observed state and the agent’s selected action at each
time step, it receives a feedback signal from the environment in the form of a numerical
reward (positive or negative). Figure 1.1 illustrates this agent-environment interaction.

Fig. 1.1 Agent-Environment Interaction in Reinforcement Learning

Assume that the agent’s state and action space is denoted by S and A respectively.
The probability of reaching the successor state s′ ∈ S by taking action a ∈ A from a given
state s ∈ S, is denoted by T (s′|s, a). R(s, a) denotes the associated reward. A model
refers to the agent’s representation of the environment. Thus, the model can be defined
mathematically in terms of the state transition probability function T : S ×A×S → [0, 1]
and the reward function R : S × A → R.

In general, the agent seeks to maximize its expected cumulative reward (i.e. the
return Gt). A discount rate γ ∈ [0, 1] is introduced, which determines the long/short
sightedness of the agent.
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Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . (1.1)

A policy π fully defines the agent’s behaviour function. Thus, a stochastic policy
π(a|s), maps a given state to a probability distribution over the actions. Every state’s or
state-action pair’s quality is valued as an expectation of the return (Gt) starting from
that particular state or state-action pair and following a certain policy π(a|s) thereafter.
These expectations are known as the state-value function Vπ(s) and action-value function
Qπ(s, a) respectively.

Vπ(s) = Eπ [Gt|St = s] (1.2)

Qπ(s, a) = Eπ [Gt|St = s, At = a] (1.3)

The cumulative expected reward by following a particular policy π over time can be
expressed as:

J(π) =
∑

t

E(st,at)∼ρπ [R (st, at)] (1.4)

Thus, the ultimate goal of RL boils down to learning a policy π that maximizes (1.4).
RL algorithms can be classified into the following three categories.

1. Value-based methods

2. Policy-based methods

3. Actor-Critic methods

The following three subsections briefly discusses each of these categories.

Value Based Methods

In value-based approaches, the value function is explicitly modelled and improved, which
is then subsequently used to extract the optimal policy for the agent. One popular
value-based method is Deep Q-Network (DQN) [11] where an explicit modelling of the
Q-function is used.

Qπ(s, a) = Es′ [r(s, a) + γEa′∼π [Qπ (s′, a′)]] (1.5)

L(θ) = Es,a,r,s′

[
(Q∗(s, a|θ) − y)2

]
(1.6)



1.1 Background 4

y = r + γ max
a′

Q
∗ (s′, a′) (1.7)

The loss L(θ) is minimized to obtain the optimal policy. An experience replay and
a separate target network is used alongside Q-learning to improve the stability and
efficiency of learning.

Policy Based Methods

In policy-based methods, a parameterized policy πθ(a|s) is directly modelled and improved
over time to obtain the optimal policy. As opposed to value-based techniques, the value
function is not explicitly modelled. The objective function (1.4) is maximized using the
policy gradient shown in the following equation (1.8).

∇θJ(θ) = Es∼pπ ,a∼πθ
[∇θ log πθ(a|s)R] (1.8)

where pπ denotes the state distribution for policy π. Based on the Policy Gradient
theorem [6], for any differentiable policy πθ(a|s), R can be replaced with Q (which is
estimated instead of being modelled in purely policy-based methods). An example of
this approach is the REINFORCE [12] algorithm where multiple trajectories are sampled
while updating the policy using the estimated gradient.

Actor-Critic Methods

Actor-critic methods can be considered as a hybrid approach where both the policy and
the value function are explicitly modelled. The critic estimates the value function (value-
based), which is then used to update the actor’s policy in the direction of performance
improvement (policy-based). These algorithms aim to reduce the variance which thereby
results in faster convergence. DDPG [13] and PPO[14] are well-known examples of
actor-critic algorithms.

1.1.2 Multi-Agent Reinforcement Learning (MARL)

Definition

In a multi-agent learning setup, multiple adaptive agents co-exist within the same
environment. A common classification of multi-agent learning problems is based on the
nature of interaction among agents; fully competitive, fully cooperative or mixed [15].
RL can be applied in such settings to develop complex physical and/or communicative
behaviour strategies among these agents. One of the most commonly used frameworks;
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Markov games [16] is a generalisation of MDPs to a multi-agent learning setup. A
stochastic or Markov game is defined by a tuple G = ⟨S, A, T, R, n, γ⟩, where S denotes
the finite set of states of the environment. Each of the n agents chooses actions sequentially.
Ai is a finite set of actions available to agent i (where i = 1, 2 . . . , n). Thus, each agent i

chooses an action a ∈ Ai which contributes to the joint action A = A1 × A2 × · · · × An.
This in turn induces a state transition in the environment according to the state transition
probability function T : S × A × S → [0, 1].

By definition, a single reward function R : S × A → R is shared among all agents and
γ ∈ [0, 1] denotes the discount factor. However, the reward structure can be modified to
provide separate rewards to individual agents as well.

Challenges in MARL

RL problems formulated using MDPs are under the assumption that the environment
is stationary from the point of view of any given agent. In most single-agent settings,
given sufficient exploration, the convergence of the underlying RL algorithm is dependant
on this assumption [15]. In a multi-agent setting, if each agent learns its optimal
behaviour independently, the remaining agents will be treated as part of the environment.
However, as learning occurs concurrently, due to the actions of the other agents, now
the environment is no longer stationary from the perspective of any given agent, thus
violating the stated assumption. Therefore, the presence of any adaptive agents other
than the agent of interest leads to this non-stationarity problem [17]. One alternative
that has been utilized, is the notion of providing a centralized view of all the other agents’
actions and/or state observations to any given agent. As a consequence, as learning
progresses, the environment becomes stationary for any given agent.

The credit assignment problem is commonly prevalent in cooperative multi-agent
learning settings, where the agents coordinate their behaviours to achieve some common
goal. Thus, the actions of all the agents contribute towards a single global reward.
However, with such a reward structure, it is difficult to determine the direct impact of
an individual agent’s actions to the overall collective performance [18] [19]. Recently,
Foerster et al. proposed a multi-agent actor-critic method known as COMA [20], which
addresses this issue. COMA utilizes a counterfactual baseline which allows the global
reward to be compared against the reward obtained when the action of a given agent is
replaced by some default action.

Often times in practical applications, the agents may have to interact with the envi-
ronment under partial observability [21]. An observation is not a complete representation
of the actual state of the environment. Moreover, in a multi-agent setting, uncertainties
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may arise when predicting the actions of the other agents and their subsequent effect
to the environment. In such cases, in order to obtain a centralized view of the state at
any given time, a potential solution would be to consider the aggregation of the partial
observations of all the agents at that particular time step.

While maintaining a centralized view of all the agents’ actions-observations may
address the non-stationarity issue, it may lead to the curse of dimensionality [17]. This
represents the exponential growth of the state-action variables with the number of agents.
This may also be the case with continuous and high dimensional state-action spaces [13].

In general, the ideal expectation of a multi-agent learning algorithm is that once it’s
trained, it allows any agent to act independently of the other agents’ actions and/or ob-
servations, while delivering the expected results through coordinated behaviour. The idea
of a centralized critic solves the issue of obtaining the optimal cooperative or competitive
results in accordance with the situation. However, the necessity of a centralized model
contradicts the idea of acting independently. In the case of value-based RL methods,
there is only a single model of the value-function that is utilized to both evaluate and
facilitate in making decisions regarding the actions to take at any given time. Centralizing
this function indicates the necessity for a non-ideal centralized view in both training and
deployment/execution.

In contrast, actor-critic methods utilize two separate models. Particularly, the actor
model is used to make decisions (i.e. action selection) and the critic model is used to
evaluate state-action pairs/states in order to guide the policy in an ideal direction during
the training phase. At execution, the only model of interest is that of the policy, thus
the critic model can be discarded at this stage. This notion of centralized training and
decentralized execution has been the natural paradigm for multi-agent learning problems.
It not only facilitate the learning of complex behaviour in the presence of adaptive agents
but also enables any given agent to act independently of the other agents’ observations.
Thus, actor-critic methods use this idea of centralizing the value function. COMA [20]
and MADDPG [1] are two existing algorithmic implementations of this concept.

1.2 Problem Definition

The objective of this project is to build on the research of recent years where RL has
been utilized in multi-agent domains, so as to effectively coordinate the behaviour of
quadcopters such that non-trivial control tasks can be performed. Specifically, the
aim is to learn control policies directly from visual-based inputs of the quadcopters
to facilitate each quadcopter to successfully navigate to predefined goals by avoiding
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obstacles. It should be noted that the training will be conducted in simulation. However,
the development would be such that it allows the eventual transfer of the model to
physical quadcopter hardware in the future as well as ensuring the relevance to real-world
applications.

The goal for the current semester (Semester 7) was to identify potential gaps in existing
multi-agent RL algorithms such that the learnings can be utilized in the following semester
to be integrated into the development of a new MARL algorithm. To facilitate this, the
first objective was to investigate the application of RL algorithms in both single-agent and
multi-agent settings. Once the selected algorithms in each setting were implemented, the
drawbacks/gaps were identified for each algorithm implementation. The second objective
was to set up the environment with the necessary requirements for future work. This
included implementing an interactive wrapper environment (Section 4.2) and custom
building maps (Section 4.1).

1.3 Deliverables and Milestones

The following Gantt chart lists the milestones and associated deliverables of the project
pertaining to Semester 7.
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Fig. 1.2 Gantt Chart (Project Progress of Semester 7)



Chapter 2

Related work

Quadcopters are known to be inherently unstable in nature [22] [23]. This coupled with
the uncertainty and complexity of the environment in which the quadcopter operates,
makes control a non-trivial task. In the autonomous control paradigm, control laws can
be classified based on the level of autonomy they achieve. High-level (i.e. outer-loop)
control algorithms address mission-level objectives such as way-point navigation, task
allocation, etc., while low-level (i.e. inner-loop) control algorithms govern factors such
as stability, control, and signal tracking [24]. Classical UAV (Unmanned Aerial Vehicle)
tasks such as taking-off, navigation, hovering, and landing, etc. are governed by different
control laws and methods as the control precision of flight parameters required by each
task is different. Within the context of autonomous flight control, given the complexity
and obscurity of each individual task, previous work has primarily focused on developing
and testing control algorithms capable of completing a specific task, in isolation [25].
Moreover, in past research, the application of RL has been mostly confined to higher-level
control decisions as opposed to lower-level actuator control.

Within the context of single-agent settings, where only a single quadcopter operates
in the environment, Q-Learning based approaches can be seen to have been applied.
Moreover, past efforts have examined feasible path planning techniques centered around
various objectives such as minimization of the traversed distance, maximization of path
safety (E.g. collision avoidance), etc. The control objective of [26] was to determine
the shortest possible path to a predefined position starting from an arbitrary position.
Model-free Q-learning was adopted to train the quadcopter to navigate to the target
point in a closed environment. The actual implementation of the solution verified the
simulated results, with the quadcopter successfully learning how to navigate within
an unknown environment. However, it was based on a discretized state-action space.
Similar to [26], Wu et al. [? ] addressed the same navigation problem of finding the
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shortest straight path between two given points. Here, collision avoidance was also taken
into consideration. A deep Q-network model was used to determine a route bypassing
obstacles in a 3D environment. Their approach was able to reduce the collision rate to
14%. However, the proposed control algorithm focused on maneuvering the quadcopter
only in the forward direction. The work [27] used a Q-learning based approach known as
Adaptive and Random Exploration (ARE) to accomplish the same control task as in [? ];
navigation via obstacle avoidance. The paper introduced the triple trap-escape strategy
to deal with two major problems that cannot be solved using only a networked Q-learning
algorithm. One problem was the possibility of selecting an action that will collide with
an obstacle given the action selection probability. The other problem was that it was
impossible to explore a trap-escape path if the UAV falls into a local optimum trap. The
authors compared three algorithmic models; Q-learning model, Neural Network model,
and trap-escape model in simulation. The proposed trap-escape model outperformed the
Q-learning model in every map, bypassing all obstacle walls and avoiding falling into wall
traps. In contrast, the work of Polvara et al. [28] exhibited the completion of the landing
maneuver of quadcopters in the presence of noise using DQN. The control problem was
subdivided into two tasks; landmark detection and vertical descent, and a hierarchical
arrangement of two Deep Q-Networks (DQNs) was employed. The performance of the
proposed solution was similar to that of human pilots and an Augmented Reality (AR)
visual tracker. However, both [29] and [28] were carried out in simulated obstacle-free
environments. One of the most recent works, [30], also focuses on navigation via obstacle
avoidance using raw depth input image by operating in a partially known environment.
Seven different environments with varying complexities (i.e. shapes, locations, etc, of
obstacles) were used to train the underlying DQN network. It was shown to be able to
generalize better in environments the agent has not been trained before. However, in
this work a rough path to the goal is known beforehand, although the agents did not
have prior knowledge regarding the obstacle locations. The authors of [4] utilized DQN,
Double DQN and Dueling architecture for the same control objective as [30]. Similar to
[30], visual-based inputs from the cameras were used for learning. The Double-DQN was
shown to perform better as opposed to the other two candidates. However, binding to
real-time rendering was identified as a bottleneck that affected the training time. Both
[30] and [4] were carried out in simulated environments using AirSim to implement the
underlying algorithms.

Furthermore, in past research, the application of RL to perform high-level control
tasks collaboratively in multi-agent environments has also been investigated. In [31], a
Geometric Reinforcement Learning (GRL) algorithm was proposed to resolve the path
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planning problem in UAVs. This approach incorporates distance information in learning
to reduce the time needed for the quadcopter to reach a target. As a single reward matrix
is maintained, this approach accommodates both single and multi-quadcopter systems.
Through collaboratively sharing information, the GRL algorithm outperformed the Q-
learning algorithm by facilitating better path planning in terms of the risk exposure to
obstacles and path length. In [32], an online distributed cooperative trajectory planning
algorithm for object searching and tracking was proposed. The proposed Quantum
Probability Model (QPM) describes the partially observable target positions. This
model is used in conjunction with the Upper Confidence Tree (UCT) [33] algorithm to
determine the optimal route, where a partner learning model is employed to manage the
non-stationary issues in distributed RL. The authors observed the approach to attain
a successful tracking ratio. To the authors’ knowledge, very few research work has
been done as of now, which incorporates cooperative high-level control using RL for
quadcopters, particularly for the purpose of navigation.



Chapter 3

Methodology

3.1 Architecture

Figure 3.1 provides a high-level overview of the architecture of the overall system. Unreal
Engine (UE4) was used to design and simulate 3D environments as well as the underlying
quadcopter physics. AirSim acts as an interface which transfers the visual input data and
control actions from UE4 to Python and vice versa. The interactive wrapper environment
was developed to add a layer of abstraction and it provides a generalized environment
for benchmarking future algorithms. PyTorch was utilized to implement DQN and
MADDPG algorithms in the single-agent and multi-agent domains respectively.

Fig. 3.1 High-level Architecture
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3.2 Simulation Platforms For Quadcopters

Several issues exist within the context of addressing autonomous UAV control problems.
In order to learn useful behaviours utilizing RL techniques, a substantial amount of
training data is required within diverse environment settings and circumstances. More-
over, the training phase is often a costly and time-consuming process intertwined with
unpredictability [34] [35].

Thus, simulation provides a feasible alternative to avoid the expensive and time-
consuming process of training and testing autonomous quadcopters in the real world.
For instance, unlike in the real world, collisions in a simulated environment is neither
catastrophic nor costly. Moreover, it can provide useful information to further refine the
design of the system. The basic requirements of a simulator for this research comprise of
a flight dynamics model, a system model (i.e. a mathematical model of the UAV system),
a control system, and other application-specific features (E.g. a module for data analysis)
[36].

The credibility of a given simulator can be assessed on the basis of several factors. For
instance, how closely the model resembles the physics and dynamics of the real system
(which determines the accuracy of the model), whether meaningful and realistic data can
be generated and captured, the ability to integrate generic flight control hardware and
software protocols within the simulation, etc. As this paper focuses on the use of RL
for control, considerable attention must also be given to the feasibility in interfacing the
simulation tool with ML models for training or/and control. These factors determine
how well all the learnings and inferences that occur in simulation can eventually be
transferred to facilitate the real-world operation of a quadcopter [36] [4].

In order to facilitate the project design, three software simulation platforms which
accommodate the above mentioned requirements were considered. Subsequently, AirSim
[34] was selected over GymFC [37] and Gazebo+ROS [35]. The justification for the
selection was as follows.

• GymFC [37] is an environment which employs Gazebo [38] high-fidelity physics
simulator and OpenAI Gym [39] interfaces for developing and training controllers
for UAVs using RL. However, this environment focuses on the highly specific task
of attitude control, with no consideration to guidance and/or navigation control.
Moreover, past work carried out in this simulated environment have not validated
the behaviour of the designed controllers against real quadcopter hardware [37] [40].
Neuroflight [41], an enhanced version of GymFC addresses some of the limitations
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of this simulation platform. However, at the time of this research, Neuroflight was
currently in its experimental phase.

• Gazebo is a 3D modeling and rendering tool, capable of accurately simulating
multi-robot environments including rigid-body physics and generating realistic
sensor feedback[42]. ROS (Robot Operating System)[43] is an open-source dis-
tributed robot software framework which provides a structured communication
layer (middleware) on top of the host OS, to facilitate the development of robot
applications. However, within the Gazebo+ROS [35] setup, each implementation
remains unique. Thus, benchmarking becomes a potential issue. Moreover, building
large-scale, visually rich environments can also be difficult.

3.2.1 AirSim

Microsoft AirSim (Aerial Informatics and Robotics Simulation) [34] is a simulation
platform for developing and testing autonomous vehicles. It has been developed as a
plugin for Unreal Engine, which acts as the visual rendering platform facilitating the
creation of detailed, photo-realistic environments. Through the generation of rich and
diverse training datasets, AirSim supports the integration of ML techniques such as RL
to develop algorithms aimed at perception and control tasks.

The architecture of AirSim comprises of the following core components; the environ-
ment model, vehicle model, physics engine, sensor models, public API layer, rendering
interface, and an interface layer for vehicle firmware.

AirSim exposes Application Program Interfaces (APIs) to programmatically interact
with the UAV in simulation, thus facilitating the retrieval of data such as state information,
output from sensor streams, etc. as well as the transmission of commands for quadcopter
control. The design of these APIs is such that the underlying functionality is hidden
to ensure that the companion computer is oblivious as to whether it is being run in
simulation or real hardware. Thus, the algorithms developed and tested in the simulator
can be seamlessly deployed to a physical quadcopter hardware.

The experiments conducted by Shah et al. [34] qualitatively assess how near realistic
the simulated aerodynamics behaviour in AirSim is to that of a quadcopter operated
in the real world. In recent work, AirSim has been used as the simulation platform
to implement control tasks for quadcopters in conjunction with RL, particularly in
navigation and obstacle avoidance [44] [45] [46] [47].



Chapter 4

Experimental Setup and
Implementation

4.1 Simulation Environment

4.1.1 Setting up the project environment

• Container setup in a high-performance server. Once the credentials to a fresh
container in a high-performance server were obtained, SSH settings were configured
in the local machines. Moreover, GPU drivers and essential packages were installed
accordingly.

• Python development environment. PyCharm IDE was installed and configured with
Python 3.6 on local machines.

• Unreal Engine 4 (UE4) setup

1. Windows: Installed using the provided binary installer from UE4 official
website.

2. Linux: As a binary installer for Linux were not provided by the developers of
Unreal Engine (UE4), a binary had to be compiled from the provided source
code.

• AirSim. AirSim source code was obtained from the GitHub repository and compiled
and installed following the instructions provided in the documentation. Thereby
the Python API package for AirSim was also installed.



4.1 Simulation Environment 16

4.1.2 Building custom maps

As mentioned in Section 3.3, in order to ensure the viability of the developed algorithm in
practical applications, a substantial amount of data is required within diverse environment
settings during the training phase. Therefore, the diversity and size of the training data,
directly influences the performance of the algorithm. In order to accommodate this
requirement, a few custom maps with varying complexities were built using unreal engine
(Figures 4.1 - 4.5).

Fig. 4.1 Open environment with goals only

Fig. 4.2 Environment with goals and obstacles
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Fig. 4.3 Maze environment with goals and obstacles

Fig. 4.4 Corridor with partitions on
the top and bottom

Fig. 4.5 Corridor with partitions on
the left and right

However, given the limited time duration (Semester 7), only two custom maps were
used to train the algorithm in addition to a pre-built map (Figure 4.6).
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Fig. 4.6 Maps in which the algorithm was trained on

4.2 Interactive Wrapper Environment

In RL the simulating environment’s complexity plays a significant role in evaluating the
environment. The more complex an environment becomes, the more knowledgeable the
evaluator of an algorithm is expected to be regarding the dynamics of the environment.
When testing over a variety of environments, the necessity to have an understanding of
the dynamics of any given environment becomes a bottleneck. Thus, to avoid such issues,
wrappers such as OpenAI Gym [39] has integrated generalized and relatively simplified
wrapper formats in order to black box the dynamics of the associated environments.
For instance, the use of attributes such as state, action reward, and their dimensions as
opposed to specifying their nature. By following a well-known standard of OpenAI Gym,
several wrappers were developed to add a layer of abstraction to the environment so that
it can be used within the context of the current problem as well as enabling it to be
utilized as an environment to benchmark for future settings and algorithms.
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Fig. 4.7 Interactive Wrapper Environment

4.2.1 Data Manipulation

Corridor with partitions on the left and right (Figure 4.5)

In this particular setting, only the depth visual from the front camera was pre-possessed
by the wrapper. This was carried out by increasing the quality of the image using a
PSNR (Peak Signal to Noise Ratio). Thereafter, it was transformed into an 84×84 image
with values ranging between 0-255 and a state matrix was returned (i.e. a Gym data type;
Box of size (84, 84)). The actions allowed for the quadcopter were defined as follows.
Moving forward was considered as1, turning left by 30°as 2 and turning right by 30°as 3.
Thus, for each action, a single numerical digit among the three discrete values; 0, 1, 2
(Discrete(3) in terms of the Gym data type) was returned. Rewards were designed such
that in the case of a collision, the agent would receive a -100 reward and a +100 reward
for reaching the goal. In addition, the agent would get a -1 reward for each time step
and a positive reward proportional to how close the agent is getting towards the goal.
The optimal strategy of this environment is to reach the goal without colliding with the
walls/partitions.

Environment with goals only (Figure 4.1)

This setting accommodated the operation of multiple agents within the same environment.
Here, the issue of partial observability is high due to the limited view of each agent.
Thus, in order to mitigate this problem to a certain extent, the depth visuals from all
four cameras (i.e. the front, left, right and back) were obtained and subjected to the
same transformation as aforementioned in the corridor scenario. Thereafter, a state was
represented as a 3D matrix of shape (4, 84, 84) (in terms of the Gym data type, this is
a Box input of shape (4, 84, 84)). As the aim was to test the multi-agent cases using
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the MADDPG algorithm (further details mentioned in Section 4.3) and as DDPG (Deep
Deterministic Policy Gradients) can only work with continuous action spaces, the action
space was designed as follows. The action space is returned as a vector of shape (2,1) (i.e.
Gym Box data type of size (2,1)) with both elements taking a real number between (-1,1).
The first element corresponds proportionally to 360 which indicates the angle the agent
must rotate by. The second served as a threshold to indicate whether the agent should
move forward by a certain distance for one second or not. The rewards were designed to
give negative values inversely proportional to the distance to the other agents. A reward
of -1 was given for every time step and a +100 of reward was given upon reaching any
one of the four goals. The optimal strategy of this environment is to reach one of the
four goals while maintaining as much distance as possible from the other agents.

4.3 Algorithms

4.3.1 Single-Agent Setting - DQN

Deep Q-learning is a modification of Q-learning where instead of storing the Q-value in a
tabular form as a running average for each action-state pair, a Neural Network-based
model is used to learn a function representation given a particular state-action pair. A
notable disadvantage of a tabular Q-learning model is that as the state space grows, the
memory needed to store these values grows as well. Thus, the use of a neural network
enables the prediction of the Q-values corresponding to all action values given a single
state. This removes the need for several passes through the neural network. As the
objective is to learn a model that generalizes the value function, data from each step
is stored in a queue-structured memory (known as the experience replay) and a batch
is sampled uniformly at random and used to train the network. This minimizes the
possibility of overfitting to a local optimum. Furthermore, as in Equation 1.5, the error
function that optimizes the Q-value function’s parameters depends directly on the same
Q-value function. This causes a non-stationary issue in learning (due to non-stationary
learning targets). In order to avoid this, two networks are used. Namely, the target
network and the current network, where the current network is updated at each time
step with the values from the target network. The target network is either adjusted to
match the current network once every certain number of steps (i.e. a hard update) or is
made to follow the current network by some soft update rule.

In the single-agent case, the DQN algorithm [11] was used to address the problem of
quadcopter navigation. A single depth visual was obtained from the front camera of the
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quadcopter. Once the intensity of the image was increased, it was re-scaled to an 84×84
pixel image and was fed into the network. The network as in Figure 4.8 consisted of
several convolution layers prior to the feed-forward layers. In the case of navigation, the
possible actions that were allowed for the quadcopter were moving straight, turning left
by 30°and turning right by 30°. DQN was implemented using the Keras-RL library with
a TensorFlow backend. The parallelization feature of the TensorFlow was utilized to
speed up the training. However, as mentioned Section 4.4, one of the largest bottlenecks
was the time consumed for a single sample of the simulation to play out. DQN was tried
on both the custom made simple corridor enviornment and the pre-build map of several
poles with their pre-built wrapper who’s ideal strategy would be to navigate to a goal
without colliding with any of the intermediate poles.

Fig. 4.8 Neural network architecture for the DQN Q-value function

4.3.2 Multi-Agent Setting - MADDPG

As mentioned in Section 1.2, two existing algorithms for multi-agent RL through the use
of actor-critic methods are COMA and MADDPG. The major difference in COMA, when
compared to MADDPG, is its structure to infer an agent’s contribution towards the
global reward, obtained within a global reward setting, based on the notion of a difference
reward. In MADDPG there is no explicit strategy to infer the credit of a certain agent
given a particular reward. For this particular phase of the project (Semester 7), given
the simplicity of its reward structure, MADDPG was chosen as a starting point for the
exploration of multi-agent scenarios using RL.

MADDPG [1] is an extension of the Deep Deterministic Policy Gradient [13], which
in turn is an extension of the Deterministic Policy Gradient [48], with the use of deep
neural networks. Here, the notation of Qi (x, a1, . . . , aN) is used to denote a centralised
critic. The formula for the policy gradient denoted by Equation 1.4 can be modified as
following with this centralized critic for an agent i in the context of MADDPG.
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∇θi
J (θi) = Es∼pµ,ai∼πi

[∇θi
log πi (ai|oi) Qπ

i (x, a1, . . . , aN)] (4.1)

Fig. 4.9 A graphical representation of the MADDPG architecture as given in [1]

DDPG can only be applied in situations with continuous action spaces. As far
as the action space is concerned, a 1-dimensional vector with two elements was used.
One element denoted the angular movement while the other denoted the transitional
movement of the given quadcopter. As the partial observability of the inputs from the
environment was high, four depth visuals from cameras of all four directions (i.e. front,
left, right and back) were used. These images were intensified and then transformed into
an 84×84 image and were fed as observations into both the actor and critic networks.
An additional information of the action was fed into the actor-network and the agents
were allowed to learn with independent rewards for each agent. The implementation
was carried out from scratch using PyTorch and its parallelization feature was leveraged.
MADDPG was trained on the Poles-Only environment (Figure 4.1).
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Fig. 4.10 Architecture of an actor network in the MADDPG model

Fig. 4.11 Architecture of the critic network in the MADDPG model

4.4 Pitfalls and Workarounds

• Environment setup. Although the necessary instructions were followed to obtain
the source code of UE4, there was an issue with obtaining it from the Epic Games
official GitHub repository due to a technical fault in their permission procedure.
Thus, the source code of Unreal Engine 4.18 had to be obtained from another
contributor’s private repository. Moreover, certain issues related to building due to
missing files were resolved by creating symbolic links wherever necessary. Once the
binary was successfully built from the source code, a segmentation fault occurred
upon trying to run Unreal Engine on the server. The binary was built multiple
times and considerable time was spent on trying to identify the underlying issue.
Eventually, the root cause was identified to be a GPU driver mismatch on the
container in the high-performance server.

• Building custom maps.
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Fig. 4.12 An unclear depth image Fig. 4.13 A clear depth image

Unreal Engine is a commercial-level game engine consisting of complex materials
and lightning configurations to obtain photo-realistic environments. However,
during the initial design of the custom maps, due to the lack of experience with the
tool, considerable attention was not given to configure complex parameters that
dictate the surface materials, textures, etc. This resulted in faulty depth images
(Figure 4.12) (which were taken as visual input by the agent). It was observed to
have a negative impact on the accuracy and the training time of the model. Thus,
the environment properties of the maps had to be fine-tuned accordingly (Figure
4.13). This was a crucial learning point which should be taken into account during
future development work.

• AirSim API. During the training phase, the altitude of the quadcopter was observed
to decrease with each time step. Thus, episodes had to be terminated prematurely.
This adversely affected the performance of the underlying algorithm. Further
investigation is required to identify a potential solution for this issue.



Chapter 5

Results and Analysis

5.1 Results

Autonomous control of quadcopter was attempted in three separate settings when using
DQN in the single-agent domain; two occasions in the pre-built map (as shown in Figure
4.6) and one in the simple corridor map (Figure 4.5). In the case of the multi-agent
domain, MADDPG was used in the open environment with only goals (Figure 4.1). The
following section discusses the observations that were obtained upon investigating each
of these cases.

1. In the pre-built map scenario with multiple poles, the learning was relatively faster
compared to that in the simple corridor setting. Moreover, it was observed that the
policy learned by the agent in a smaller area of this map was sufficient to generalize
within most of the larger area as opposed to that in the simple corridor setting.

2. In the simple corridor scenario, the quadcopter was observed to spend more time
on turning/yawing relative to that in the pre-built map. A visual depiction of
the three actions taken by the agent in each map is shown in the following figures
(Figure 5.1 - 5.2)
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Fig. 5.1 Simple corridor Fig. 5.2 Pre-built map

3. The variance of actions taken by the agent in all three cases did not show a
significant difference.

5.2 Analysis

The following section analyses the respective results obtained in the given order.

1. The pre-built map was mostly homogeneous in nature. That is, a certain section
could be utilized to generalize most of the map. For instance, the gaps between any
two poles do not provide room for a potential collision. However, in comparison,
the simple corridor had some diversity to it. For instance, the partitions along the
corridor were either to the left or right and there was a more restrictive border
for the quadcopter. These factors can be attributed to the ability of the agent to
learn much faster to navigate in the pre-built environment setting as opposed to
the simple corridor setting.

2. The fact that the agent spent a considerable amount of time on yawing (as opposed
to the other actions) in the simple corridor map may be due to the complexity and
restrictive nature of the map compared to the pre-built map.

3. As an actor-critic method was considered for the case of the multi-agent domain,
compared to high variance policy gradient methods, the observed variance was not
significantly high (i.e. theoretically using function approximation to determine the
value function as opposed to equating it to an average of several observed rewards,
is proven to reduce the associated variance).



Chapter 6

Conclusions and Future Works

This study has explored the application of Reinforcement Learning in the context of
autonomous quadcopter control. Particularly, the implementation of the DQN algorithm
in a single-agent setting and MADDPG algorithm in a multi-agent setting. In multi-
agent settings, where multiple quadcopters can be found to be operating within the same
environment, there exist scenarios with individualized reward structures as well a single
global reward structure. Upon using a single global reward structure, it is difficult to
explicitly determine how each agent’s actions contribute to the global reward. Thus,
MADDPG is only compatible with an individual reward structure as it fails to identify
individual agent contributions in single global reward setting. Existing algorithms such
as COMA address this issue to a certain extent, by using a relatively complex global
reward inference structure.

In terms of future work, one potential improvement that can be done would be to
extend on COMA to facilitate efficient credit assignments to individual agents in a single
global reward setting. In addition, as of now, the algorithm was validated against simple
and primitive environment settings. A potential avenue would be to further optimize the
algorithm in a large, complex and diversified environment such that it can be applied
to a real world application. One such application can be in wildlife surveillance, where
Supervised Learning can integrated, so as to accommodate the additional functionality
of object detection (E.g. poachers, animals, etc.).
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