
Multi-Agent Reinforcement
Learning in Sparsely Connected

Cooperative Environments
- Final Report -

Pankayaraj Pathmanathan
Yuvini Sumanasekera

Chandima Samarasinghe

Department of Computer Engineering
University of Peradeniya

Final Year Project (courses CO421 & CO425) report submitted as a
requirement of the degree of

B.Sc.Eng. in Computer Engineering

July 2020

Supervisors: Dr. Dhammika Elkaduwe (University of Peradeniya), Dr. Upul Jayasinghe
(University of Peradeniya) and Dr. D. H. S. Maithripala (University of Peradeniya)

We would like to dedicate this thesis to our project supervisors, academia and colleagues
who guided us in this process. We are grateful for their support, advise and endless

encouragement.

Declaration

We hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university.
This dissertation is our own work and contains nothing which is the outcome of work
done in collaboration with others, except as specified in the text and Acknowledgments.

Pankayaraj Pathmanathan
Yuvini Sumanasekera

Chandima Samarasinghe
July 2020

Acknowledgements

First and foremost we would like to thank our supervisors, Dr. Dhammika Elkaduwe, Dr.
Upul Jayasinghe and Dr D.H.S Maithripala for their continuous support and guidance
in the successful delivery of the project. Their invaluable feedback and constructive
criticism ensured that the project progressed in the right direction and its successful
completion.

At the same time, we wish to express our appreciation to Prof. Roshan Ragel, Dr.
Sampath Deegalla, Dr. Damayanthi Herath, and Dr. Pradeepa Bandaranayake for their
guidance and helpful discussions regarding the final year project.

We are also grateful to all members of the academic staff and non-academic staff at
the Department of Computer Engineering, University of Peradeniya, for their support
extended in numerous ways.

Finally, our heartfelt gratitude goes out to our families who have always been
encouraging and supporting us throughout our academic career.

Abstract

In recent years, the consensus among adaptive agents within multi-agent systems (MAS)
has been an emerging area of research in the field of autonomous control. Reinforcement
Learning (RL) has gained immense interest in this line of work as it aims to learn
optimal cooperative policies through trial and error by dynamically interacting with the
environment. However, in practice, connectivity within the multi-agent network may be
sparse and the agents are often subjected to partial observability. This can result in the
learning of sub-optimal policies. In this work, we consider the problem of learning optimal
policies in cooperative multi-agent environments in the face of partial observability and
sparse connectivity. The proposed model exploits the inherent graph-like structure of
multi-agent systems. Graph Neural Networks (GNNs) are utilized to extract spatial
dependencies and temporal dynamics of the underlying graph. Such spatio-temporal
information is exploited to generate better state representations so as to facilitate the
learning of more robust policies. Empirically, we demonstrate the effectiveness of the
proposed model on a variety of well-known cooperative control tasks. Finally, we conclude
the paper with proposals on possible research directions.

Table of contents

List of figures viii

List of tables ix

Nomenclature x

1 Introduction 1
1.1 Background . 2

1.1.1 Reinforcement Learning . 2
1.1.2 Multi-Agent Reinforcement Learning (MARL) 4

1.2 Problem Statement . 6
1.3 Milestones and Deliverables . 7
1.4 Outline of the Report . 7

2 Related work 9
2.1 MARL . 9

2.1.1 Learning-for-consensus . 9
2.1.2 Learning-for-communication . 10

2.2 MARL with GNNs . 11

3 Methodology 13
3.1 Graph Construction . 14
3.2 Spatial Dependency Modelling . 14

3.2.1 Initialization Module . 14
3.2.2 Message Propagation Module . 16

3.3 Temporal Dynamics Modelling . 17
3.4 Policy Learning . 19

3.4.1 Policy Optimization . 20

Table of contents vii

4 Experimental Setup and Implementation 21
4.1 Simulation Environment . 21
4.2 Implementation Details . 22

4.2.1 Node Features . 22
4.2.2 Architecture and Training . 22

5 Results and Analysis 24
5.1 Preliminary Directions . 26

5.1.1 Pairwise Approximation of the Q-Function in MARL 26

6 Conclusions and Future Works 29

References 31

Appendix A Pairwise Approximation of the Q-Function in MARL 36
A.1 Proposition . 37

List of figures

1.1 Agent-environment interaction in reinforcement learning 2

3.1 Overall architecture of the model for a given agent i 13
3.2 Graph-based representation of a multi-agent system 14
3.3 Architecture of the initialization module for a given agent i 15
3.4 The message propagation module illustrating a single propagation step

for a given agent i. 16
3.5 Gradual increase of the receptive field of a given agent i corresponding to

propagation steps d = 1, 2, and 3. 17
3.6 Temporal dependencies along three consecutive time-steps, where the

spatial relations between nodes of the underlying graph are considered to
be stationary. 18

3.7 Architecture of the basic LSTM [1] memory cell utilised in temporal
dependency modelling. 19

4.1 Experimental environments and the associated control tasks. (a) Coverage
control, (b) Polygonal formation control, and (c) Linear formation control. 22

List of tables

5.1 Performance comparisons in learning environments with A= 3 agents . . 25
5.2 Performance comparisons in learning environments with A= 6 agents . . 26

Nomenclature

Acronyms / Abbreviations

CTDE Centralised Training with Decentralised Execution

GNN Graph Neural Network

GRU Gated Recurrent Unit

LSTM Long Short Term Memory

MARL Multi-Agent Reinforcement Learning

MAS Multi-Agent System

MDP Markov Decision Process

NN Neural Network

PPO Proximal Policy Optimization

RL Reinforcement Learning

RNN Recurrent Neural Network

Chapter 1

Introduction

Multi-agent systems (MAS) consist of a network of loosely connected autonomous agents
interacting with one another to achieve some objective(s). These systems are widely
used for solving problems that are beyond the capabilities of single-agent systems. The
efficiency, robustness, reliability, and scalability offered by such systems, make them
appealing to a variety of application domains [2]. In recent years, the consensus among
the adaptive agents within MAS has been an emerging area of research in the field of
autonomous control. In practice, such agents may operate in environments with complex
dynamics and high degrees of uncertainty. Thus, defining which agent behaviours are
optimal for a given situation, ahead of time, is impractical or often impossible [3]. As
opposed to relying on a predefined behaviour strategy, Reinforcement Learning (RL)
enforces the learning of optimal behaviour through trial and error, by allowing the agent
(i.e. the learner) to dynamically interact with the environment [4]. With the success
of RL in single-agent domains, the focus of research has shifted towards developing
RL based techniques that take into account the dynamicity and uncertainty of the
environment, as well as complexities arising from agent-to-agent interactions in multi-
agent domains. Accompanied by the recent popularity of deep learning techniques,
multi-agent reinforcement learning (MARL) has diversified into numerous real-world
applications such as robotics [5], network management and packet routing [6, 7], resource
management [8, 9], power grid control [10, 11], etc.

Many multi-agent systems—from social networks to molecular structures—inherently
exhibit the structure of graphs. Moreover, graphs provide rich and expressive means of
modelling and reasoning about multi-agent systems. Prior to end-to-end learning, tradi-
tional machine learning methodologies typically relied on handcrafted feature engineering
to extract meaningful latent representations from data [12], [13]. Graph neural networks
(GNN) [14] leverage the capabilities of existing deep learning techniques to learn from

1.1 Background 2

non-Euclidean graph-structured data. Spatio-temporal dependencies reflect the dynamics
and correlations of the underlying multi-agent system across both space and time. Thus,
capturing such dependencies can provide crucial insight into the mutual interplay among
the agents, the evolution of agent behaviour overtime, etc. This facilitates agents to learn
more robust coordination strategies coherently. In this work, we propose a reinforcement
model, where spatio-temporal dependencies of the underlying graph structure of the
multi-agent system are exploited to leverage the learning of optimal policies in cooperative
environments.

1.1 Background

1.1.1 Reinforcement Learning

In contrast to classical machine learning techniques, reinforcement learning approaches
attempt to learn useful behaviour through dynamic interactions between a "goal-directed"
agent (i.e. the learner and decision-maker) and the environment [4]. RL problems are
formally modelled as Markov decision processes (MDPs) which can be defined by a tuple
M = ⟨S, A, T, R, γ⟩. Thus, as the agent explores potential behaviour strategies, based
on the observed state and the agent’s selected action at each time-step, it receives a
feedback signal from the environment in the form of a numerical reward (positive or
negative). Figure 1.1 illustrates this agent-environment interaction.

Fig. 1.1 Agent-environment interaction in reinforcement learning

Assume that the agent’s state and action space is denoted by S and A respectively.
The probability of reaching the successor state s′ ∈ S by taking action a ∈ A from a
given state s ∈ S, is denoted by T : S × A × S → [0, 1]. The agent receives an immediate

1.1 Background 3

scalar reward r according to the reward function R : S × A → R. In general, the agent
seeks to maximize its sum of discounted future rewards (i.e. the return Gt). A discount
rate γ ∈ [0, 1] is introduced, which determines the short/long sightedness of the agent in
terms of reward accumulation.

Gt = rt+1 + γrt+2 + γ2rt+3 + . . . (1.1)

A policy π fully defines the agent’s behaviour function. Specifically, a stochastic policy;
π(a|s), maps a given state to a probability distribution over the actions. Every state’s or
state-action pair’s quality is valued as an expectation of the return (Gt) starting from
that particular state or state-action pair and following a certain policy π(a|s) thereafter.
These expectations are known as the state-value function V π(s) and action-value function
Qπ(s, a) respectively.

V π(s) = Eπ [Gt|st = s] (1.2)

Qπ(s, a) = Eπ [Gt|st = s, at = a] (1.3)

The expected rewards generated by following a parameterized policy π(a|s; θ) over
time, can be considered as the objective function (1.4).

J(θ) = Est∼pπ ,at∼π

[∑
t

R (st, at)
]

(1.4)

where pπ denotes the state distribution for policy π(a|s; θ). Thus, the ultimate goal
of RL boils down to learning a policy π(a|s; θ) that maximizes this objective function
(1.4). RL algorithms can be classified into three categories; value-based, policy-based,
and actor-critic methods. The following three subsections briefly discusses each of these
categories.

Value Based Methods

In value-based approaches, the value function is explicitly modelled and improved, which
is subsequently used to extract the agent’s optimal policy. One popular value-based
method is Deep Q-Network (DQN) [15], where a parameterized function approximator;
Q(s, a; w) is used to represent Qπ(s, a).

Q(s, a; w) = Es′ [R(s, a) + γEa′∼π [Q (s′, a′)] (1.5)

1.1 Background 4

The optimal policy is obtained by minimizing the loss function L(w) (1.6).

L (w) = Es,a,r,s′∼D
[
(Q (s, a; w) − y)2

]
(1.6)

where y = r+γ maxa′ Q (s′, a′; w−). Here, D is a replay buffer that stores recent experience
tuples; (s, a, r, s′), and Q (s, a; w−) is a parameterized target network. Maintaining an
experience replay buffer and a separate target network improves the stability and efficiency
of learning [15].

Policy Based Methods

In policy-based methods, the policy π(a|s; θ) is directly modelled and improved over time
to obtain the optimal policy. As opposed to value-based techniques, the value function is
not explicitly modelled. The objective function (1.4) is maximized by adjusting θ in the
direction of the policy gradient (1.7).

∇θJ(θ) = Es∼pπ ,a∼π [∇θ log π(a|s; θ)R] (1.7)

Based on the policy gradient theorem [4], for any differentiable policy π(a|s; θ), R

can be replaced with Q (s, a; w). An example of this approach is the REINFORCE [16]
algorithm where multiple trajectories are sampled while updating the policy using the
estimated gradient.

Actor-Critic Methods

Actor-critic methods can be considered as a hybrid approach where both the policy and
the value function are explicitly modelled. The critic Q (s, a; w) estimates the value
function (value-based), which is then used to update the actor π(a|s; θ) in the direction
of policy improvement (policy-based) [4]. DDPG [17] and PPO [18] are well-known
examples of actor-critic algorithms.

1.1.2 Multi-Agent Reinforcement Learning (MARL)

In a multi-agent learning setup, several adaptive agents co-exist in a common environment.
Thus, the behaviour strategy of one agent is influenced not only by the environment
but also by other agents’ behaviours. RL can be applied in such settings to learn
complex physical and/or communicative strategies through dynamic interactions with the
environment and with other agents. One of the most commonly used frameworks; Markov
games [19] is a generalisation of MDPs to a multi-agent learning setup. Often times,

1.1 Background 5

as the agents are distributed across the environment and due to their limited sensing
capabilities, partial observability can occur. Under such conditions, a partially observable
Markov game is defined by a tuple G = ⟨S, A, T, R, O, Z, n, γ⟩, where S denotes the finite
set of states of the environment. Each of the n agents chooses actions sequentially. Ai

and Oi denote the finite sets of actions and observations available to agent i respectively,
where i = 1, 2, . . . , n. The local observation perceived by agent i; o ∈ Oi is generated from
the underlying state according to the observation function Z : S × A → O. Each agent i

chooses an action a ∈ Ai which contributes to the joint action A = A1 × A2 × . . . × An.
This in turn induces a state transition in the environment according to the state transition
probability function T : S × A × S → [0, 1]. Each agent i receives an immediate reward
as a function of the global state and the joint action, Ri : S × A → R.

RL problems formulated using MDPs are under the assumption that the environment
is stationary from the point of view of any given agent. In most single-agent settings, given
sufficient exploration, the convergence of the underlying RL algorithm is dependant on this
assumption [20]. In a multi-agent setting, if each agent were to learn its optimal behaviour
independently, the remaining agents would be treated as part of the environment.
However, as learning occurs concurrently, due to the actions of the other agents, now
the environment is no longer stationary from the perspective of any given agent, thus
violating the stated assumption. Therefore, the presence of any adaptive agents other
than the agent of interest leads to this non-stationarity problem [3]. The notion of
centralised training with decentralised execution (CTDE) has been extensively utilised
in solving MARL problems, as it addresses the issue of non-stationarity [21], [22]. Here,
a centralized critic that has access to the observations and actions of all the agents,
is exploited during training. Thus, as learning progresses, the environment becomes
stationary for any given agent. However, during execution, the actors solely rely on local
action-observation histories. Thus, while additional information is available for an agent
during training, execution is conditioned only on local information.

As actor-critic methods utilise two separate models, such algorithms naturally fit into
the CTDE framework. Particularly, the actor model is used to make decisions (i.e. action
selection) and the critic model is used to evaluate state-action pairs to guide the policy
in the direction of optimality during the training phase. At execution, the only model
of interest is that of the actor (policy), therefore, the critic model can be discarded at
this stage. Thus, CTDE not only facilitates the learning of complex behaviours in the
presence of adaptive agents but also enables any given agent to act independently of the
other agents’ actions and/or observations while delivering the expected results through
coordinated behaviour.

1.2 Problem Statement 6

1.2 Problem Statement

The goal of the research is to develop a MARL model to leverage the learning of optimal
agent policies so as to establish consensus among the agents to carry out some control task
cooperatively. A comprehensive analysis of literature related to previous studies in the
domain deduced that modelling multi-agent systems so as to encapsulate the dynamicity
of the learning environment is often a challenge. Motivated by the recent advancements
in deep learning, graph-based approaches show great promise in this line of work. Thus,
one of the objectives of this research was to incorporate GNNs to leverage the capabilities
of MARL to generate more robust control policies. In practice, agents are often limited
by their sensing capabilities which result in partial observability. As an observation is
not a complete representation of the underlying state of the environment, inferring the
actual state using the joint observations of all agents, is often inadequate. Moreover,
as Q(o, a|θ) ̸= Q(s, a|θ), decisions based on such partial observations can lead to sub-
optimal policies [23]. Sub-optimal policies may also stem from sparse connectivity within
multi-agent networks that result from poor network connectivity, limited bandwidth
of the communication channels or sparse interactions among agents. Further, due to
computational intractability and cost of communication, it is often infeasible to consider
information from all agents. Thus, a primary aim of the research was to ensure that
the proposed model was reflective of such practical constraints prevalent in real-world
applications.

In this work, we propose a reinforcement learning model, in which the multi-agent
system is modelled as a graph. The nodes may represent the agents or environment
entities, while the edges represent the communicative dependencies between nodes. The
proposed model utilises spatio-temporal dependency modelling to generate better state
representations for the learning agents within the system. Spatial dependency modelling
includes an iterative message-propagation mechanism to ensure information propagation
through the network via intermediary nodes. Inspired by some of the recent work in
this line of work, the design of the spatial dependency module of the proposed model
closely follows the work of Agarwal et al. [24]. Temporal dependency modelling utilises a
recurrent structure which retains information and propagates such information through
time. Thus, as opposed to raw local observations, spatio-temporal dependency modelling
generates state representations which are more reflective of the spatial influences of the
agent-agent interactions as well as the underlying temporal dynamics of the system. Such
state representations are thereby utilised by the agents in learning optimal policies to
perform some cooperative control task. Notably, this work intends to solely conduct the
training and evaluation of the proposed model in a simulated particle environment and

1.3 Milestones and Deliverables 7

thus, considers the transfer of the simulated model to the real-world applications as a
potential future work.

1.3 Milestones and Deliverables

The research progression and the subsequent accomplishment of the research objectives
were acknowledged through four major milestones. The initial milestone was to synthesize
literature on multi-agent reinforcement learning, particularly focusing on the limitations
that are prevalent in practical learning environments. Once the first milestone was
achieved, the subsequent one was to develop a theoretical understanding of the formulated
research problem and to develop the necessary theoretical frameworks and backings. The
reasoning being, the design and implementation of a MARL model (and RL in general)
constitutes of several different moving parts, thus establishing the necessary theoretical
foundations will ease the subsequent debugging process. The work done under this
milestone is discussed in detail under Section 5.1 and Appendix A. The third milestone
was aimed at formulating a robust solution for the practical requirements, satisfying the
theoretical findings that were obtained. This encompasses the design and implementation
phase of the research. The final milestone was to characterize and understand the impact
of the implemented solution on policy learning and subsequently validate its performance
against a variety of control tasks with varying number of agents.

The primary deliverable that is part of this research work includes the MARL model
capable of leveraging the learning of optimal cooperative agent policies by compensating
for the loss of information due to sparse connectivity and partial observability prevalent
within real-world multi-agent systems. Moreover, the final report is also presented as a
deliverable, which provides a detailed, accurate, and cohesive account of the research
effort.

1.4 Outline of the Report

The concluded introductory chapter is followed by the second chapter; the literature
review. The chapter is composed by conducting a broad review of previous studies
carried out in the problem domain, which are relevant for the research. Existing work on
MARL is identified to be two-fold depending on how consensus is acquired among the
learning agents and is thus organized under separate subsections; learning-for-consensus
and learning-for-communication. The review will further focus on past work that has

1.4 Outline of the Report 8

integrated GNNs into the MARL architecture. The contributions and limitations of the
studies will be evaluated to identify the gaps in the domain that needs to be addressed.

The third chapter describes the design methodology of the research. A high-level
overview of the proposed model will be introduced, followed by a detailed description of
its constituent modules. Further, the design considerations and the justifications behind
selecting certain components/techniques will be discussed as well.

The fourth chapter describes the experimental setup and implementation details of
the study. This will outline the environment and the control tasks utilised in the study.

The final two chapters cover the discussion and the conclusion of the study. The fifth
chapter will provide the experimental results and a subsequent analysis of the results.
The benefits, limitations and feasibility of the implemented solution will be discussed in
this chapter. To conclude the report, the sixth chapter will provide the conclusions of
the research and possible avenues for future research.

Chapter 2

Related work

2.1 MARL

2.1.1 Learning-for-consensus

In learning-for-consensus approaches, during the execution of the learned policies, agents’
actions are solely based on local observations. Coordination is facilitated by allowing each
agent to exploit information of other agents during the training phase [25], [26]. Much
of the recent work in this line of research incorporates CTDE as it provides a natural
paradigm for such learning settings. MADDPG [27] was devised as an extension of DDPG
[17] to multi-agent cooperative, competitive and mixed environments with continuous
action spaces. Each agent utilises a separate centralised critic augmented with additional
information regarding other agents’ policies, thus removing the effect of non-stationarity.
The actors take actions based on their local observations. Foerster et al. proposed COMA
[22], which relies on a fully centralized critic. COMA specifically addresses the credit
assignment problem commonly prevalent in cooperative multi-agent learning settings,
where agents must coordinate their behaviours to achieve some common goal. The model
utilises a counterfactual baseline which marginalizes out the action of a given agent
such that its effect on the global reward can be evaluated. CM3 [28] follows a similar
approach within a multi-goal environment, where the impact of each agent’s behaviour
on the remaining agents’ goal attainment is determined. Yang et al. [29] argued that
the input space of a centralized critic grows exponentially with the increasing number of
agents. Thus, the authors proposed a mean-field MARL approach which approximates
the centralised critic by one which considers only the pairwise local interactions between
a given agent and its neighbours. However, this approximation can result in the loss
of information beneficial for learning effective cooperation strategies. Given that any

2.1 MARL 10

particular agent is not affected by all agents at all times, an alternative approach was
proposed in MAAC [30]. The centralized critic employs an attention mechanism that
allows each agent to dynamically select agents to attend to during training. As the
centralized critic does not consider aggregated information from all the other agents at
any given time as in [27] and [22], the input space is shown to scale linearly with the
number of agents.

2.1.2 Learning-for-communication

Learning-for-communication approaches achieve coordination by sharing information
among agents via explicit communication protocols [25], [26]. With the popularity in DRL
techniques, a variety of end-to-end learning architectures have been proposed to facilitate
communication among agents. BiCNet [31] introduces a vectorised version of the multi-
agent actor-critic formulation, based on bi-directional RNNs. The bi-directional recurrent
structure acts as a communication channel which facilitates information sharing among
heterogeneous agents. CommNet [32] considers the notion of continuous communication to
learn fully cooperative tasks. Each agent learns a communication protocol in conjunction
with its policy. Through a multi-cycle communication mechanism, local state observations
and the average of incoming messages determine agents’ actions. Both [31] and [32]
are under the assumption that all the agents communicate with one another at any
given time. A few notable work involves the notion of targeted communication whereby
agents learn when, what and whom to communicate with, using attention mechanisms.
Enabling agents to actively differentiate and select useful information from globally shared
information helps in developing more efficient and effective communication strategies
which improves consensus among agents. IC3Net [33] is an extension of [32], where the
continuous communication model is controlled using a gating mechanism. This enables
agents to learn when and what to communicate with other agents. Moreover, it makes
amendments to some of the shortcomings of [32]. Notably, the credit assignment problem
and the model’s lack of applicability in competitive and mixed multi-agent settings. Jiang
et al. proposed ATOC [34], a scalable communication model for partially observable
distributed learning settings. An attention layer fully determines whether communication
is required for a given agent at each time-step. A bi-directional Long Short Term Memory
(LSTM) structure facilitates communication by connecting each agent to the other agents
within its receptive field. TarMAC [35] utilises a soft attention mechanism to determine
which agents to communicate with and what messages to transmit, in partially-observable
cooperative learning settings. A signature encoded with agent-specific information is sent

2.2 MARL with GNNs 11

alongside the message which ensures that the broadcasted message reaches the intended
agents.

2.2 MARL with GNNs

Generalizing neural networks to graph-structured data is currently an active area of
deep learning research. However, the research efforts to incorporate GNNs to MARL
problems have been limited thus far. Wang et al. proposed NerveNet [36], that utilises
GNNs to learn policies by exploiting the graph-like body structure of human/robot
agents. Actions for different body parts of the agent are predicted via information
propagation over the underlying structure. The ability of such learned policies to be
generalised to other learning tasks is also highlighted. DGN [37] introduces a graph
convolution network (GCN) based approach to facilitate the learning of cooperative
policies. Convolution with relation kernels is utilised to capture relation representations of
the underlying graph that are exploited to better understand the mutual interplay among
the learning agents. HAMA [25] considers a mixed learning setting with both cooperative
and competitive agents that are clustered based on some pre-defined rules. The authors
introduced a hierarchical graph attention network-based method to model both the intra-
group relationships as well as the inter-group relationships among the learning agents.
Considering effective communication as an integral part of multi-agent cooperation, Sheng
et al. proposed LSC [38]. LSC utilises hierarchical graph neural networks to enable
both intra-group and inter-group message generation and message propagation among
dynamically clustered agents. A notable observation of all the aforementioned studies is
that, in order to facilitate relation reasoning within the multi-agent system, the extraction
of latent features is limited to the spatial domain, with no consideration to that of the
temporal domain. In contrast, Wang et al. introduced STMARL [39] as a framework for
multi-intersection traffic light control that utlizes spatio-temporal dependency modelling.
A recurrent neural network structure is utilised to exploit historical traffic information
while a GNN-based structure is utilised to facilitate relation reasoning among the traffic
lights. The authors argue that the influence mechanism among multi-intersection traffic
lights can be better understood via spatio-temporal dependency modelling. Hu et al.
[40] proposed a progressive relation learning framework for group activity recognition
and analysis. In order to explicitly model the relations among individuals within the
group, a semantic relation graph is constructed. Two agents utilize RL to progressively
refine the low-level spatio-temporal features and high-level semantic relations of group

2.2 MARL with GNNs 12

activities. The work demonstrates the implicit coordination between the two learning
agents which affects the performance of the underlying group activity recognition task.

Chapter 3

Methodology

Figure 3.1 illustrates the pipeline of our proposed model. In the following subsections,
we introduce each of the constituent modules in detail.

Fig. 3.1 Overall architecture of the model for a given agent i

3.1 Graph Construction 14

3.1 Graph Construction

We organize the multi-agent system as an undirected graph G = (V , E), where V is the set
of nodes and E is the set of edges. Each node v ∈ V represents either an agent or an entity.
Here, entities represent certain objects in the environment such as landmarks, obstacles,
etc. In practice, an agent is more likely to interact and be influenced by agents/entities
in its immediate vicinity. Therefore, the communication range of an agent is specified as
a function of proximity, which consequently determines its neighbourhood. We denote
the neighbourhood of agent i as N (i) (Figure 3.2), determined by the communication
range of agent i. Thus, in G, there exists an edge (i, v) ∈ E between agent i and node v

(agent or entity), if v ∈ N (i). Further, for a given agent i, its neighbourhood of agents
and neighbourhood of entities are denoted by Na(i) and Ne(i) respectively. Note that,
N (i) = Na(i) ∪ Ne(i).

Fig. 3.2 Graph-based representation of a multi-agent system

3.2 Spatial Dependency Modelling

3.2.1 Initialization Module

Figure 3.3 illustrates the pipeline of the initialization module for a given agent i. At any
given time step t, the local observation ot

i perceived by agent i, constitutes of its position
and velocity. The raw input ot

i is encoded into a fixed-length state vector xt
i = ϕS(ot

i),
where ϕS(.) denotes the state encoding function. For each entity u ∈ Ne(i), agent i

computes the encoding et
iu = ϕE(ot

iu), where ϕE(.) denotes the entity encoding function.
Here, ot

iu represents i’s observation of u (i.e. the relative position of entity u with respect
to agent i). As ot

iu is determined by considering a given agent’s own perception of

3.2 Spatial Dependency Modelling 15

Fig. 3.3 Architecture of the initialization module for a given agent i

its neighbouring entities, explicit communication between the agent and entities is not
required.

Each agent i, linearly transforms the encoding xt
i into Q̃t

i and every encoding et
iu

into Kt
iu and V t

iu. The graph attention mechanism [41] is utilised to compute attention
weights between Q̃t

i and all Kt
iu values. A fixed-length output vector ēt

i is computed as a
weighted sum of the V t

iu values with the attention weights. The node feature vector ht
i

associated with each agent i at time step t, is obtained by concatenating xt
i with ēt

i.

ht
i = [xt

i || ēt
i] (3.1)

where || denotes the concatenating operation. Intuitively, ht
i represents agent i’s perception

of its own local state as well as the entities within its neighbourhood.

3.2 Spatial Dependency Modelling 16

3.2.2 Message Propagation Module

At each time step t, an internal propagation process is repeated several times to capture
the spatial correlations among agents coherently. Thus, the node feature vector ht

i

computed above is considered as the node feature vector of agent i at propagation step 0
(in time step t) and is re-written as ht,0

i . Note that, in deriving the propagation module,
we omit time t for notational simplicity. Thus, ht,0

i → h0
i .

Fig. 3.4 The message propagation module illustrating a single propagation step for a
given agent i.

At every propagation step d, each agent i ∈ V linearly projects its current node feature
vector to key, value and query representations denoted by Ki, Vi and Qi respectively.
Thereafter, each agent i receives a message containing the key-value pair (Kj, Vj) from
every agent j ∈ Na(i). For a given agent i, let Na(i)+ denote Na(i) including i. Upon
receiving all the messages from its corresponding neighbours, agent i computes a score
using the scaled dot-product attention mechanism [42] for each agent j ∈ Na(i)+.
These scores indicate the importance of a given neighbour’s information to the agent of
interest. These scores are subsequently used to obtain the respective attention weights,
αij = softmax

(
QiKj

⊤
√

dK

)
, where dK is the dimensionality of K. The aggregated message

vector md
i is computed by taking the weighted sum of the neighbours’ values Vj and

3.3 Temporal Dynamics Modelling 17

passing the output through a dense layer.

md
i = Wo

∑
j∈N (i)+

αijVj (3.2)

where Wo denotes the trainable parameter weights of the dense layer. The node feature
vector of every agent is updated based on the current node feature and the aggregated
message vector.

hd+1
i = ϕU([hd

i || md
i]) (3.3)

where ϕU(.) denotes the update function.
The above process represents a single propagation step (one-hop) in which a given

agent i acquires information from its neighbouring agents (Figure 3.4). Thus, repeating
the process a fixed number of steps (a multi-hop propagation mechanism) enables a given
agent to gradually increase its receptive field (Figure 3.5). Specifically, for a sparsely
connected multi-agent network, this enables an agent to propagate information to agents
outside its communication range.

Fig. 3.5 Gradual increase of the receptive field of a given agent i corresponding to
propagation steps d = 1, 2, and 3.

3.3 Temporal Dynamics Modelling

Let h̄t
i denote the final node feature vector of agent i obtained after a fixed number of

propagation steps (at time step t). We incorporate historical information in an attempt
to capture temporal dynamic features of the underlying system.

ĥt
i = ϕT(h̄t

i, ĥt−1
i) (3.4)

3.3 Temporal Dynamics Modelling 18

Figure 3.6 illustrates the intuitive idea behind temporal dependency modelling; as
having access to snapshots of the previous graph structures of the underlying multi-agent
system.

Fig. 3.6 Temporal dependencies along three consecutive time-steps, where the spatial
relations between nodes of the underlying graph are considered to be stationary.

Two possible alternatives; GRUs [43] and LSTMs [1] were considered when selecting a
suitable recurrent structure for ϕT(.), where the selection was carried out on the basis of
accuracy and memory efficiency of the underlying architecture. The corresponding system
of equations which composes ϕT(.) upon adopting a GRU or LSTM architecture are
shown by equations (3.5) and (3.6) respectively. Note that, we omit the agent reference
i for notational simplicity.

zt = σ
(
Wzh̄t + Uzĥt−1 + bz

)
rt = σ

(
Wrh̄

t + Urĥ
t−1 + br

)
ḧt = tanh

(
Whh̄t + Uh

(
rt ⊙ ĥt−1

)
+ bh

)
ĥt =

(
1 − zt

)
⊙ ĥt−1 + zt ⊙ ḧt

(3.5)

f t = σ
(
Wf h̄t + Uf ĥt−1 + bf

)
ut = σ

(
Wuh̄t + Uuĥt−1 + bu

)
ot = σ

(
Woh̄

t + Uoĥ
t−1 + bo

)
c̃t = tanh

(
Wch̄

t + Ucĥ
t−1 + bc

)
ct = f t ⊙ ct−1 + ut ⊙ c̃t

ĥt = ot ⊙ tanh
(
ct

)
(3.6)

3.4 Policy Learning 19

where Wz, Wr, Wf , Wu, Wo, Wc, Uz, Ur, Uf , Uu, Uo, Uc denotes the corresponding
weights and bz, br, bf , bu, bo, bc denotes the corresponding bias terms. σ denotes the
non-linearity function and ⊙ denotes the Hadamard product.

As given in (3.5), the GRU is composed of a simpler structure with only update
gates zt and reset gates rt. The number of parameters it takes is smaller compared to
LSTM (3.6), which consists of three gates; the forget gate f t, input gate ut, and output
gate ot. Therefore, in terms of memory efficiency, GRU may be considered as a better
option. However, the presence of a forget gate in LSTM makes it more suitable for long
sequences. Particularly, within our model, sequences refer to entire episodes. Thus, being
able to capture long sequences more accurately is of paramount importance. Therefore,
we incorporate the LSTM architecture (Figure 3.7) as the temporal unit of the underlying
model despite the potential burden on memory.

Fig. 3.7 Architecture of the basic LSTM [1] memory cell utilised in temporal dependency
modelling.

Intuitively, the output from spatio-temporal modelling ĥt
i represents an enriched

representation of the raw observation ot
i perceived by a given agent i. That is, ĥt

i is more
reflective of the spatial influences of the agent-agent interactions as well as the underlying
temporal dynamics of the system. During training, ĥt

i is fed into the corresponding critic
network and the actor network for a given agent i to learn optimal policies that facilitates
in carrying out the underlying control tasks cooperatively.

3.4 Policy Learning

At this stage, the comprehensive features generated via spatio-temporal dependency
modelling are exploited to train decentralised agent policies. The encoding ĥt

i is fed into

3.4 Policy Learning 20

the critic network and the actor network of the corresponding agent i, which estimate
the action-value and probability distribution over all possible actions, respectively. Upon
sampling an action from the distribution, each agent will act accordingly and subsequently
receive a joint reward from the environment. In this work, we consider the agents to be
homogeneous and thus, share all learnable parameters including those of the encoding
functions, update functions, actor and critic networks. As each agent perceives its
local environment differently and attends to incoming messages from its neighbourhood
differently, sharing parameters does not hinder an agent’s ability to act autonomously.

3.4.1 Policy Optimization

Generally, in the process of learning, vanilla policy gradient optimization techniques may
lead to less optimal policies. Moreover, considering the degree of non-stationarity that is
prevalent within the environment due to the sparse connectivity, it is preferable if there
is a guarantee of policy improvement following every update.

η(π̃) = η(π) + Es0,a0,...∼π

[∞∑
t=0

γtAπ (st, at)
]

(3.7)

where Aπ denotes the advantage function corresponding to policy π, and η(π) denotes
the expected reward return following the policy π [44].

TRPO [44] is one such algorithm that builds upon the identity (3.7), derived in [45],
to guarantee a policy improvement at every step. However, this algorithm relies on the
roll-out of multiple trajectories from the current policy, prior to making a single update.
Moreover, it also involves an expensive calculation of a Fisher discriminant matrix. Given
the expensive pre-processing carried out within our proposed model and the memory
burden of the LSTM resulting from the underlying dynamicity, the addition of yet another
heavy computation was considered to be unsuitable. Thus, we opted for PPO [18] as the
policy optimization technique, which does the same monotonic improvement but with
simple first-order terms by the introduction of a clipping mechanism.

Chapter 4

Experimental Setup and
Implementation

4.1 Simulation Environment

For the experiments, we consider the two-dimensional multi-agent particle environment
proposed in [27] with a discretized action space. The environments constitute of A

agents and E entities, where the cooperating agents attempt to carryout out some pre-
defined control task. Particularly, we consider three well-known multi-agent cooperative
control tasks [24]; target coverage, formation control in terms of polygonal and linear
pattern generation (Figure 4.1). We briefly describe each of the three aforementioned
environments below.

1. Coverage Control. In an environment with N entities, each of the N agents
attempts to navigate to a distinct entity, without colliding with one another. As a
particular agent is not pre-assigned some entity beforehand, each agent must infer
a suitable target entity via consensus.

2. Polygonal Formation Control. In this environment, N cooperating agents
attempt to position themselves evenly around one entity, such that they form an
N -sided regular polygon with the entity at its centre.

3. Linear Formation Control. In this environment, N cooperating agents attempt
to evenly position themselves along a straight-line in between two entities.

4.2 Implementation Details 22

Fig. 4.1 Experimental environments and the associated control tasks. (a) Coverage
control, (b) Polygonal formation control, and (c) Linear formation control.

4.2 Implementation Details

4.2.1 Node Features

In this work, the local observation of a particular agent constitutes of its position ((x, y)
location) and its velocity. In order to incorporate the notion of a sparsely connected
network, we limit the communication range of each agent to a radius of 1 unit. As entities
are considered to be stationary, the corresponding node feature of an entity constitutes
of only its position ((x, y) location). Thus, ot

iu denotes the relative position of entity u

with respect to agent i at time t. Therefore, the corresponding dimensions of the inputs
fed into ϕS(.) and ϕE(.) are 4 and 2 units, respectively.

4.2.2 Architecture and Training

Both encoding functions; ϕS(.) and ϕE(.) embed their respective inputs into a 128-
dimensional vector with a fully connected MLP layer using ReLU non-linearity activation
function. The attention layer in the message propagation module uses 128-dimensional
keys, values and queries. The update function ϕU(.) is yet another MLP layer with 128
neurons and ReLU activation. The temporal data is enriched using an LSTM module
with 128 neurons (denoted by the function ϕT(.)). This pre-processed data is then used
as input for both the critic (value) and actor (policy) networks. Both the inputs and
outputs of the temporal unit are concatenated and fed into the critic network and passed
through a 128-dimensional MLP layer from which a single value function is obtained.
Similarly, the actor network is also fed with the same input as the critic network, and
subsequently passed through a 128-dimensional MLP layer. The output is fed through a

4.2 Implementation Details 23

categorical distribution to obtain the probabilities over the possible actions. In all of the
aforementioned layers, the ReLU non-linearity activation function is used. As mentioned
earlier, we consider the agents to be homogeneous and thus, share all learnable parameters
including those of the encoding functions, update functions, actor and critic networks. As
each agent perceives its local environment differently and attends to incoming messages
from its neighbourhood differently, sharing parameters does not hinder an agent’s ability
to act autonomously.

Each episode is composed of 50 time-steps and the algorithm is evaluated after every
30 episodes during training. The corresponding success rate is employed as the final
performance metric of the algorithm. The algorithms are trained until convergence. The
Adam optimizer with a learning rate of 0.001 is utilised to optimize the neural networks.
Each PPO update is done after 128 time-steps.

Chapter 5

Results and Analysis

We employ two other models; [27] and [24], as baselines to validate the performance of
the proposed model. In [27], the model learns a centralised critic for each agent with
access to joint observations and actions from all agents during learning and thus, does not
rely on some explicit communication mechanism. In, [24], the model employs a message
propagation mechanism (complementary to that used in our proposed model for spatial
dependency modelling) to learn transferable policies, however, does not consider the
temporal dynamics and dependencies of the underlying system during policy learning.
We analyze and evaluate the models on the aforementioned control tasks; target coverage,
formation control in terms of polygonal and linear pattern generation.

We employ two performance metrics; success rate (S%) and time (T) to compare the
performance of the proposed model against the aforementioned baselines. The success
rate (S%) denotes the percentage of the number of episodes in which the underlying
objective was achieved over the total number of episodes. The metric, time (T) denotes
the number of time-steps that were required to achieve the underlying objective. Here,
an objective refers to the cooperative control task the adaptive agents are expected to
perform in the respective environments.

Further, in terms of communication, we consider two cases; restricted communica-
tion (RC) and unrestricted communication (UC). In RC settings, the communication
constraints for a given agent highlighted throughout this paper hold. That is, each
agent is only allowed to directly communicate with its neighbours. In UC settings, such
constraints do not hold, thus, each agent can communicate with all the other agents
and entities within the population (in which case the MAS can be represented by a fully
connected graph G).

Table 5.1 and Table 5.2 summarize the performance of the different models under the
aforementioned learning settings with A = 3 and A = 6 agents, respectively.

25

Table 5.1 Performance comparisons in learning environments with A= 3 agents

Control Task Algorithm Observability Communication T S%
Coverage Lowe et al. [27] Full N/A 17.89 95

Yang et al. [24] Partial UC 14.12 100
Partial RC 14.22 98

Ours Partial UC 9.27 100
Partial RC 11.36 100

Polygonal Formation Lowe et al. [27] Full N/A 15.66 95
Yang et al. [24] Partial UC 13.56 100

Partial RC 12.97 98
Ours Partial UC 8.10 100

Partial RC 11.00 100

Linear Formation Lowe et al. [27] Full N/A 35.84 58
Yang et al. [24] Partial UC 15.14 98

Partial RC 15.24 97
Ours Partial UC 9.77 100

Partial RC 12.03 100

Higher S% values indicate the ability of the agents to learn effective policies au-
tonomously to execute the underlying control task cooperatively. Lower T values indicate
the ability of the agents to learn such policies quickly (i.e. faster converging policies).
The results from Table 5.1 and Table 5.2 indicate that our proposed model outperforms
the other baselines against the two performance metrics, under both restrictive and
non-restrictive communication conditions whilst being subjected to partial observability.

The baseline model [27] requires a considerably longer time to learn suitable policies,
yet results in lower success rates compared to the other two models, which is particularly
evident in the line formation control task. Moreover, as the agent population increases,
it fails to converge sufficiently quickly compared to the other two models, despite the
agents having full observability (i.e. access to other agents’ information) during training.
The baseline model [24] learns reasonable policies in all control tasks, however, it requires
relatively more time as reflected by the performance metric T . The proposed model
strictly dominates the baseline models, both in terms of training speed and consistently
achieving the underlying control objective across all learning settings. This is attributed to
effectively extracting latent features across the temporal domain in addition to the spatial

5.1 Preliminary Directions 26

domain which evidently enables an agent to implicitly infer the behaviour strategies of
other agents, thereby providing a faster convergence to the underlying objective.

Thus, the experimental results indicate the significance of exploiting spatio-temporal
dependency modelling to compensate for the loss of information due to sparse connectivity
and partial observability, to facilitate adaptive agents to quickly learn more meaningful
and robust policies.

Table 5.2 Performance comparisons in learning environments with A= 6 agents

Control Task Algorithm Observability Communication T S%
Coverage Lowe et al. [27] Full N/A 50 0

Yang et al. [24] Partial UC 20.47 93
Partial RC 48.32 5

Ours Partial UC 16.32 96
Partial RC 17.53 93

Polygonal Formation Lowe et al. [27] Full N/A 50 0
Yang et al. [24] Partial UC 14.22 100

Partial RC 14.26 100
Ours Partial UC 11.17 100

Partial RC 10.07 100

Linear Formation Lowe et al. [27] Full N/A 50 0
Yang et al. [24] Partial UC 16.31 100

Partial RC 17.07 100
Ours Partial UC 9.77 100

Partial RC 12.33 100

5.1 Preliminary Directions

5.1.1 Pairwise Approximation of the Q-Function in MARL

We first approached the notion of sparse connectivity within a MAS by considering the
smallest unit of interacting agents within any learning environment; a pair of agents.
Following the CTDE framework, in a MAS with N agents, each agent j ∈ {1, 2 . . . , N}
utilises a centralised critic in the form of Qj(s, a), where a = {a1, . . . , aN} denotes the
joint action. In a sparsely connected learning environment, the accessibility to the joint
action a may be limited for certain agents. Moreover, as the dimensionality of the joint

5.1 Preliminary Directions 27

action a grows proportionally with the number of agents, considering the associated
computational cost and complexity, learning the standard Q-function may be infeasible.
Following the work of Yang et al. [29], the standard Q-function can be approximated by
the mean effect of the local interactions within a given agent’s neighbourhood. However,
as the size of the neighbourhood can vary dynamically, we assume that at a given time,
any given agent j is guaranteed to interact at least with one of its neighbours (say with
the neighbouring agent k). Thus, the N -agent stochastic game can be reduced to multiple
2-agent stochastic games. For any given pair of agents j, k ∈ N , we define the “pairwise
Q-function” as follows.

Qj (s, aj, ak) = Eπjk

[
Rt

j | st = s, at
j = aj, at

k = ak

]
(5.1)

where πjk = [πj πk].
As we focus on a problem setting with CTDE, the policies are independent. Thus,

π (aj, ak|s) = πj (a|s) πk (a|s) (5.2)

A potential issue that arises from this setting is that from the perspective of the pair
of agents, it is assumed that the actions of the agent-pair are solely responsible for the
global reward, whereas the true pairwise Q-function of a pair would be given as,

Qtrue
j (s, aj, ak) =

∑
i∈X(i)

π ({ai}i | s) Q (s, a1, . . . , ai, . . . , an)

where X(i) = j−1 ∩ k−1 represents the index set of all the agents other than agent j and
k. As the policies are considered to be independent under the CTDE paradigm,

π ({ai}i | s) = π1 (a | s) · π2 (a | s) · . . . · πi (a | s) · . . . · πn (a | s)

This is obtained by keeping the action-pair of interest constant and marginalising
out the actions of all the other agents. One particular issue with this approach is that,
given that we have the estimation for all pairs, minimizing the difference between the
true pairwise Q-function and our estimation. A potential solution for this would be to
formulate a credit function.

We formulate an action-independent baseline function from the estimated pairwise
Q-function (we provide the complete proof in the Appendix).

b(s) =
∑

j

πj(a|s) ·
∑

k

πk(a|s) · Qj(s, aj, ak) (5.3)

5.1 Preliminary Directions 28

With the above baseline (5.3), we can now define an advantage function as follows.

Aj(s, a) = Qj(s, a) − b(s) (5.4)

Intuitively, the idea here is that if a particular action-pair of interest is responsible
for the change in the Q-function, then the baseline would not be able to reduce the
advantage function. However, when the particular action-pair is not responsible for the
change in the Q-function and it was due to the actions of other agent pairs, the baseline
would reduce the advantage function value. However, with this setup advantage function
is dependant on the global Q-function, Q(s, a). Thus, in order to utilise the advantage
function to proceed in meaningful directions, we still require a valid estimate to the
global Q-function in sparsely connected learning environments. Consequently, we shifted
the focus of the research to GNN-based methods to first obtain an estimate to the global
Q-function and this was the direction that was subsequently covered in Chapter 3.

Chapter 6

Conclusions and Future Works

In many multi-agent systems, establishing consensus among adaptive agents to solve
some complex control task is a challenging problem. In this work, we introduce a MARL
model to leverage the learning of optimal cooperative agent policies by exploiting the
inherent graph-like structure of multi-agent systems. The proposed model utilises spatio-
temporal dependency modelling to compensate for the loss of information due to sparse
connectivity and partial observability prevalent within real-world multi-agent learning
environments. Spatial dependency modelling includes an iterative message-propagation
mechanism to ensure information propagation through the network via intermediary
nodes. Temporal dependency modelling utilises a recurrent structure which retains
information and propagates such information through time. Thus, as opposed to raw
local observations, spatio-temporal dependency modelling generates state representations
which are more reflective of the spatial influences of the agent-agent interactions as well as
the underlying temporal dynamics of the system. Such state representations are thereby
utilised by the agents in learning meaningful policies to perform some cooperative control
task. Empirically, we demonstrate the effectiveness of the proposed model on a variety
of well-known cooperative control tasks. Further, we show that our model outperforms
other MARL models given its ability to generate faster converging policies and learn
more robust coordination strategies coherently.

In terms of future work, one potential avenue would be to incorporate the pairwise
Q-function and the baseline function which were formulated as part of the preliminary
work of this research. As we now have access to an estimation of the centralised Q-
function, we can verify and validate the viability of this approach and the potential
benefits it may present. Moreover, we can extend the model to incorporate edge features
in addition to node features during spatial dependency modelling, to further enrich the
state representations. For instance, in a learning environment with heterogeneous agents,

30

edge features can be exploited to be reflective of the nature of the relationships among
agents. As of now, the algorithm was validated against simple and primitive environment
settings. Thus, we can further optimize the algorithm in large, complex and diversified
environments such that it can be utilised in real-world applications.

References

[1] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[2] P. Balaji and D. Srinivasan, “An introduction to multi-agent systems,” in Innovations
in multi-agent systems and applications-1, pp. 1–27, Springer, 2010.

[3] L. Bu, R. Babu, B. De Schutter, et al., “A comprehensive survey of multiagent
reinforcement learning,” IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews), vol. 38, no. 2, pp. 156–172, 2008.

[4] R. S. Sutton, A. G. Barto, et al., Introduction to reinforcement learning, vol. 2. MIT
press Cambridge, 1998.

[5] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A survey,”
The International Journal of Robotics Research, vol. 32, no. 11, pp. 1238–1274, 2013.

[6] J. A. Boyan and M. L. Littman, “Packet routing in dynamically changing networks:
A reinforcement learning approach,” in Advances in neural information processing
systems, pp. 671–678, 1994.

[7] D. Ye, M. Zhang, and Y. Yang, “A multi-agent framework for packet routing in
wireless sensor networks,” sensors, vol. 15, no. 5, pp. 10026–10047, 2015.

[8] Y. Wei and M. Zhao, “A reinforcement learning-based approach to dynamic job-shop
scheduling,” Acta Automatica Sinica, vol. 31, no. 5, p. 765, 2005.

[9] D. B. Noureddine, A. Gharbi, and S. B. Ahmed, “Multi-agent deep reinforcement
learning for task allocation in dynamic environment.,” in ICSOFT, pp. 17–26, 2017.

[10] J. G. Schneider, W.-K. Wong, A. W. Moore, and M. A. Riedmiller, “Distributed value
functions,” in Proceedings of the Sixteenth International Conference on Machine
Learning, pp. 371–378, 1999.

References 32

[11] M. Riedmiller, A. Moore, and J. Schneider, “Reinforcement learning for cooperating
and communicating reactive agents in electrical power grids,” in Workshop on
Balancing Reactivity and Social Deliberation in Multi-Agent Systems, pp. 137–149,
Springer, 2000.

[12] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun,
“Graph neural networks: A review of methods and applications,” arXiv preprint
arXiv:1812.08434, 2018.

[13] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehensive survey
on graph neural networks,” arXiv preprint arXiv:1901.00596, 2019.

[14] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph
neural network model,” IEEE Transactions on Neural Networks, vol. 20, no. 1,
pp. 61–80, 2008.

[15] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint
arXiv:1312.5602, 2013.

[16] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist
reinforcement learning,” Machine learning, vol. 8, no. 3-4, pp. 229–256, 1992.

[17] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. M. O. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,” CoRR,
vol. abs/1509.02971, 2015.

[18] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” ArXiv, vol. abs/1707.06347, 2017.

[19] J. van der Wal, Stochastic Dynamic Programming: Successive Approximations
and Nearly Optimal Strategies for Markov Decision Processes and Markov Games.
Mathematical Centre tracts, Mathematisch Centrum, 1981.

[20] K. Tuyls and G. Weiss, “Multiagent learning: Basics, challenges, and prospects,” Ai
Magazine, vol. 33, no. 3, pp. 41–41, 2012.

[21] T. T. Nguyen, N. D. Nguyen, and S. Nahavandi, “Deep reinforcement learning for
multi-agent systems: A review of challenges, solutions and applications,” arXiv
preprint arXiv:1812.11794, 2018.

References 33

[22] J. N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson, “Counterfac-
tual multi-agent policy gradients,” in Thirty-second AAAI conference on artificial
intelligence, 2018.

[23] F. S. Melo and M. Veloso, “Learning of coordination: Exploiting sparse interactions
in multiagent systems,” in Proceedings of The 8th International Conference on
Autonomous Agents and Multiagent Systems-Volume 2, pp. 773–780, International
Foundation for Autonomous Agents and Multiagent Systems, 2009.

[24] A. Agarwal, S. Kumar, and K. Sycara, “Learning transferable cooperative behavior
in multi-agent teams,” arXiv preprint arXiv:1906.01202, 2019.

[25] H. Ryu, H. Shin, and J. Park, “Multi-agent actor-critic with hierarchical graph
attention network,” arXiv preprint arXiv:1909.12557, 2019.

[26] J. Sheng, X. Wang, B. Jin, J. Yan, W. Li, T.-H. Chang, J. Wang, and H. Zha,
“Learning structured communication for multi-agent reinforcement learning,” arXiv
preprint arXiv:2002.04235, 2020.

[27] R. Lowe, Y. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch, “Multi-agent
actor-critic for mixed cooperative-competitive environments,” in Advances in neural
information processing systems, pp. 6379–6390, 2017.

[28] J. Yang, A. Nakhaei, D. Isele, K. Fujimura, and H. Zha, “Cm3: Coopera-
tive multi-goal multi-stage multi-agent reinforcement learning,” arXiv preprint
arXiv:1809.05188, 2018.

[29] Y. Yang, R. Luo, M. Li, M. Zhou, W. Zhang, and J. Wang, “Mean field multi-agent
reinforcement learning,” arXiv preprint arXiv:1802.05438, 2018.

[30] S. Iqbal and F. Sha, “Actor-attention-critic for multi-agent reinforcement learning,”
arXiv preprint arXiv:1810.02912, 2018.

[31] P. Peng, Q. Yuan, Y. Wen, Y. Yang, Z. Tang, H. Long, and J. Wang, “Multiagent
bidirectionally-coordinated nets for learning to play starcraft combat games,” arXiv
preprint arXiv:1703.10069, vol. 2, 2017.

[32] S. Sukhbaatar, R. Fergus, et al., “Learning multiagent communication with back-
propagation,” in Advances in neural information processing systems, pp. 2244–2252,
2016.

References 34

[33] A. Singh, T. Jain, and S. Sukhbaatar, “Learning when to communicate at scale in
multiagent cooperative and competitive tasks,” arXiv preprint arXiv:1812.09755,
2018.

[34] J. Jiang and Z. Lu, “Learning attentional communication for multi-agent cooperation,”
in Advances in neural information processing systems, pp. 7254–7264, 2018.

[35] A. Das, T. Gervet, J. Romoff, D. Batra, D. Parikh, M. Rabbat, and J. Pineau,
“Tarmac: Targeted multi-agent communication,” arXiv preprint arXiv:1810.11187,
2018.

[36] T. Wang, R. Liao, J. Ba, and S. Fidler, “Nervenet: Learning structured policy with
graph neural networks,” in International Conference on Learning Representations,
2018.

[37] J. Jiang, C. Dun, and Z. Lu, “Graph convolutional reinforcement learning for
multi-agent cooperation,” arXiv preprint arXiv:1810.09202, vol. 2, no. 3, 2018.

[38] J. Sheng, X. Wang, B. Jin, J. Yan, W. Li, T.-H. Chang, J. Wang, and H. Zha,
“Learning structured communication for multi-agent reinforcement learning,” arXiv
preprint arXiv:2002.04235, 2020.

[39] Y. Wang, T. Xu, X. Niu, C. Tan, E. Chen, and H. Xiong, “Stmarl: A spatio-temporal
multi-agent reinforcement learning approach for traffic light control,” arXiv preprint
arXiv:1908.10577, 2019.

[40] G. Hu, B. Cui, Y. He, and S. Yu, “Progressive relation learning for group activity
recognition,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 980–989, 2020.

[41] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph
attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[42] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin, “Attention is all you need,” in Advances in neural information
processing systems, pp. 5998–6008, 2017.

[43] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On the proper-
ties of neural machine translation: Encoder-decoder approaches,” arXiv preprint
arXiv:1409.1259, 2014.

References 35

[44] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy
optimization,” in International conference on machine learning, pp. 1889–1897, 2015.

[45] S. Kakade and J. Langford, “Approximately optimal approximate reinforcement
learning,” in ICML, vol. 2, pp. 267–274, 2002.

Appendix A

Pairwise Approximation of the
Q-Function in MARL

In a sparsely connected MAS, the smallest unit of interacting agents within the learning
environment is a pair of agents. Following this line of thought, we reduce an N -agent
stochastic game to multiple 2-agent stochastic games. Similar to the approach used
in independent actor-critic (IAC) [22] which assumes a 1-agent stochastic game, we
formulate the 2-agent stochastic game as follows. For any given pair of agents j, k ∈ N ,
we define the “pairwise Q-function” as,

Qj (s, aj, ak) = Eπjk

[
Rt

j | st = s, at
j = aj, at

k = ak

]
(A.1)

where πjk = [πj πk]

As we focus on decentralized execution, the policies are considered to be independent.
Thus,

π (aj, ak|s) = πj (a|s) πk (a|s) (A.2)

From the Bellman expectation equation [4],

Qj (s, aj, ak) = Eπjk

[
Rt

j + γQj

(
st+1, at+1

j , at+1
k

)
| st = s, at

j = aj, at
k = ak

]
(A.3)

where at+1
j ∼ πj (a|st+1) and at+1

k ∼ πk (a|st+1)

Thus, this pairwise Q-function parameterized by θQc , can be learnt by minimizing the
following loss function,

L (θQc) = E
[
y − Qj

(
st, at

j, at
k ; θQc

)]
. (A.4)

A.1 Proposition 37

where
y = Rt

j + γQj

(
st+1, π

(
aj|st+1

)
, π

(
ak|st+1

)
; θQc

)
. (A.5)

Furthermore, if we marginalize aj, ak out, we obtain,

∑
jk

π(aj, ak|s) · Qj(s, aj, ak) =
∑
jk

πj(a|s) · πk(a|s) · Qj(s, aj, ak)

=
∑

j

πj(a|s) ·
∑

k

πk(a|s) · Qj(s, aj, ak)

=
∑

j

πj(a|s) · Qj(s, aj)

= Vj(s)

An action-independent baseline function can be constructed from the pairwise Q-function
as follows.

b(s) =
∑

j

πj(a|s) ·
∑

k

πk(a|s) · Qj(s, aj, ak) (A.6)

A.1 Proposition

The baseline function b(s) (A.6) does not introduce any bias into the gradient calculation.
Eπjk

[b(s)∇θ log π(a|s)] evaluates to zero, and hence has no effect on the gradient update.

We follow the proof of the policy gradient theorem [4],

∇Eπjk
[b(s)] =

∑
s∈S

dπjk(s) ·
∑

∇θπjk(a|s) · b(s)

where dπjk(s) denotes the state distribution following πjk.
Since b(s) is independent of actions,

∇Eπjk
[b(s)] =

∑
s∈S

dπjk(s) ·
(∑

∇θπjk(a|s)
)

· b(s)

=
∑
s∈S

dπjk(s) ·
(∑

∇θ1
)

· b(s)

=
∑
s∈S

dπjk(s) · 0 · b(s)

= 0

	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Background
	1.1.1 Reinforcement Learning
	1.1.2 Multi-Agent Reinforcement Learning (MARL)

	1.2 Problem Statement
	1.3 Milestones and Deliverables
	1.4 Outline of the Report

	2 Related work
	2.1 MARL
	2.1.1 Learning-for-consensus
	2.1.2 Learning-for-communication

	2.2 MARL with GNNs

	3 Methodology
	3.1 Graph Construction
	3.2 Spatial Dependency Modelling
	3.2.1 Initialization Module
	3.2.2 Message Propagation Module

	3.3 Temporal Dynamics Modelling
	3.4 Policy Learning
	3.4.1 Policy Optimization

	4 Experimental Setup and Implementation
	4.1 Simulation Environment
	4.2 Implementation Details
	4.2.1 Node Features
	4.2.2 Architecture and Training

	5 Results and Analysis
	5.1 Preliminary Directions
	5.1.1 Pairwise Approximation of the Q-Function in MARL

	6 Conclusions and Future Works
	References
	Appendix A Pairwise Approximation of the Q-Function in MARL
	A.1 Proposition

