

Making A Python Based Package for the

Multi Arm Bandit Problem

Group Members

 ​​Pankayaraj (E/14/237)

 Subasinghe(E/14/335)

Introduction

In probability theory multi arm bandit problem or N-arm bandit problem is a
problem in which a gambler at a row machine have to choose which machine to play
and how many time to play it given a limited number of turns to choose. When chosen a
machine would give a particular amount of reward which is either deterministic or
probabilistic. Thus to accumulate an optimal amount of reward the gambler should
choose a an optimal solution without knowing the reward structure behind the machine.
If stated formally the problem can be considered as a set of real distributions

Where each distribution can be associated with the rewards produced by each one of
the arms when selected. If we let the mean of those rewards to be

When the gambler iteratively chooses some for iterations arms, then the regret for
that procedure can be measured as

Where

And is the reward associated with a single selection.

Thus the problem can be solved by trying to reduce the regret which will eventually
maximise the total amount of reward obtained.

Instead of considering these rewards as a result of a real distribution they can
also be considered as a bernoulli distribution to tackle the problem where the reward is
a binary variable.

As the problem moved away from the discrete arms got extended as a
continuous variable with a K dimension the problem got extended as continuous bandit
problem. Since the no of bandits became infinite to reduce the complexity the problem
was formulated with deterministic rewards where the rewards of each arm were
considered as a correlated function. As the scope of these problems narrowed down to
the bayesian thinking they were named as bayesian optimization. They can be
considered as a problem where we are supposed to optimize a function with certain
bounds with as few samples as possible.

Problem definition and proposed solution

Problem

Due to the large no of variation and vast amount of solutions proposed for this
particular problem making a standard open source library for the problem has been an
issue. Though the presence of large number of solutions has been an issue that doesn’t
stop the problem from being important in the practical aspects. Due to the rapid
development of machine learning the prominence of optimization has increased greater
than before. When it comes to implementing this problem financial institutes are using
their own exclusive libraries while the research communities are using the functions
written by previous researchers. Thus those functions written by them are not only
scattered but also not optimal in performance as they fail to use all the computer
hardware available completely.

Proposed Solution

So we decided to make a standard library for this problem. Since the scope of
the problem and solutions available are vast we have decided to initially make a library
on a narrowed scope and then continue it from there on. As far as the discrete case is

concerned for the time being we have decided to make a take care of the problem with
a binary reward and to opt the one with a continuous reward out as the solutions
proposed for them where large in number. And we decided to concentrate more on the
continuous case. The reason for the narrowing strategy is the concern towards the
practical need for this solutions. Due the massive improvement in reinforcement
learning in the recent years the problem of learning an optimum policy by the agent in
an environment within a short period of time became an important problem. Thus the
continuous case mentioned above became more important. Thus concentrating on that
issue seemed more important to us. So we have decided to concentrate on the
bayesian optimization domain in this problem. Though in theory the solutions proposed
gave a certain time limits in complexity parallelization of the problem with help of GPUs
seemed as an viable option as well. So we have decided to parallelize the code
wherever it seems optimal in the process of implementing the library.

Solutions Implemented

Binary Rewards(Discrete case) : Beta Bernoulli Model

Here the rewards are considered as a bernoulli random variable. Since the
bernoulli random variable can be characterized by their mean only a prior belief on
those means where modeled and updated as they were sampled along time. A Beta
distribution is used to model the initial belief on those means and then the arm with the
highest mean is sampled and the belief is updated according to the bayes theorem.

Continuous Bandit Problem

Here three algorithms Probability of improvement, thompson sampling and
Expected improvement are implemented with gaussian process as a surrogate function.
Since we don’t know the function we are optimizing a belief on that function is built
initially and then that belief is updated with every sample we obtain. Thus a faster
optimization can be made my a good model of belief

Here the belief/ Surrogate function that is used is a gaussian process. The
advantage of a gaussian process is that it gives not only a interpolation of existing
points but also a measure on how much uncertain it is about each prediction.

As seen in the figure it give a prediction of the function(blue) and an uncertainty about a
point in that function (purple). The prediction is given as the mean of a gaussian
distribution while the uncertainty is given as the variance of the same distribution.
The similar concept can also be implemented using a bayesian neural network where
instead of obtaining a parametric model we obtain a probabilistic model from a neural
network using a technique called dropout.

Once such measurements are obtained the mean provides us a way to exploit the
recent findings while the variance gives us an indication of the unexplored area.
Thus functions that are formulated using the two parameters can be optimized to obtain
a sample that will possibly be a better one. Such functions that are formed are the
probability of improvement, expected improvement and thompson sampling

Thompson Sampling

The idea behind the thompson sampling is to draw a function from this surrogate

function and optimize that function. And the sample at the optimum value and then
update the surrogate function. Continuing this way will give us the optimum solution.

Probability of Improvement

In this process the probability of the next sampled point being greater than the existing
maximum is considered as the acquisition function to to be optimized to get the new
sample. This method is normally used when the point in the proximity of the maximum
is known.

Expected Improvement

Expected improvement is an idea that was proposed by Mockus in 1978 based on the
idea of bayesian decision process.

Design and implementation of the solution

Choosing the language

First of all we have to choose a programming language as the interface

language. Given the prominence of this problem within the research community we had
to decide a language that is popular within the community. The language also needed to
be resourceful to tackle the issue of parallelizing which is discussed below. Thus we
went with python 3 as our interface language for this problem

Finding a code base

Since it was a group project we needed to find an appropriate code base so that
group can communicate without any issues. Moreover due to the open sourced nature
of this project we needed a popular and easily accessible free base. Thus we have
decide the popular github as our code base. The codes were formulated and maintained
in a github repository. The URL for that repository is

https://github.com/punk95/Multi-Arm-Bandit-Library

Apart from making the code available in a library we have also decided to make it easy
to install as use with python from anywhere. Thus we also choose to upload a wheel of
the project to PYPI the largest python repository to be installed from anywhere with
python setuptools.

Parallelization of code

As much as we have identified the need for the parallelization of the code we
have also identified the need of a stable mechanism for the purpose with a continuous
improvement along time. So it became obvious for us to go for an already stable under
continuous development python package to do the parallelization. Though we have
initially decided to go with the Theano package developed by University of Montreal due
to their recent announcement on the discontinuation of the further development we have
decided to go with a Google backed package Tensorflow for the parallelization process.

https://github.com/punk95/Multi-Arm-Bandit-Library

Structuring the functions

We wanted the package to be more flexible and easy for the user to use. Since a
particular solution had many dependencies which have their own hyper parameters. For
example in the continuous case where the surrogate function Gaussian process and the
bayesian neural network had their own hyper parameters to tune such as the learning
rate, no of layers, kernel parameters etc. At the meanwhile the acquisition function had
its own parameters to care about. At the meanwhile gaussian process had to lead with
large matrices in the process.

Thus to make matter easier for the surrogate function we have decided to
implement them with the concept of object oriented programming. That way the
surrogate functions get to use their own matrices for a prolonged use rather than to
create them each time they are needed. With the effectiveness of object oriented
programming it was tempting for us to make the acquisition function using the same
methodology. But since the problem we were tackling was that of active learning we
thought it would be computationally optimal not to create an object every time we use
them to make a sample. Furthermore they didn’t have any notably large amount of
dependent data. Thus it made us to go with the usage of normal functions while
providing options to tune the surrogate functions behind with through these functional
argument.

Parallelization

When it came to parallelizing as already decided we went an existing library
tensorflow. But the only cost with a library is that it is a static library. That is all the
structures of the algorithm must be defined beforehand for it to optimize the algorithm.
Thus though it made a heavy process run faster with a good gpu it had an issue of
creating significant amount of overhead beforehand. Thus it made sense for us to use
the parallelization for the surrogate functions which are going to take long time to
produce the results and going to stay in use for a while. Meanwhile using parallelization
for the iterative light weighted functions such as acquisition ones seemed like an

computationally expensive option rather than an optimal one. So we have decided to
make those functions with sequential programming techniques.

Programming Dependencies

As mentioned above for the purpose of parallelization we used tensorflow library.
Furthermore for the purpose of handling arrays and random numbers efficiently we used
a frequently used package numpy in our implementation. In addition to that we had the
problem of optimizing the acquisition function with the luxury of having more
inexpensive sampling at each iteration to get the next sample point. Thus we needed a
good package to do the traditional optimization. Thus we have used the renowned scipy
to get these necessary functions for the optimization. Thus in total three packages
tensorflow, scipy, and numpy along with their own dependencies were used to
implement this package.

Results

Beta Bernoulli model

Figure :​​ ​The results produced by Beta Bernoulli model when 5 arms with binary
rewards were given

Expected Improvement with Gaussian Process as a surrogate
function

Figure : ​​Six hump Camel Back Function

Figure : ​​Results produced by Expected improvement when it is used to optimize a six
hump camel back function. Here red points indicate the actual sampled function while
the blue curves on the top denote the acquisition function optimized for a new sample

Probability of Improvement with Gaussian Process as a surrogate
function

Figure :​​ ​​Results produced by Probability of improvement method when point near the
maximum is known. Here red points indicate the actual sampled function while the blue
curves on the top denote the acquisition function optimized for a new sample

Figure : ​​Results produced by a Probability of Improvement when a point near the
actual maximum is unknown. Here red points indicate the actual sampled function while
the blue curves on the top denote the acquisition function optimized for a new sample

Future Works

Thus we have concluded our project with the discrete case where the rewards
are binary and the continuous case where the gaussian process is used as a surrogate
function. But as said earlier the set of solutions available for this problem is vast and we
have only achieved a small feat in our vision. Thus we have decided to publish the
product made so far and to continue our works aftermath, updating the product in the
process. As far as the continuous case is concerned we have decided to first develop
the same set of algorithms to work with the already formulated bayesian neural network.
The we have decided to make an implementation of the recent information theory base
methods such as entropy search, predictive entropy search and max value entropy
search.

As far as the discrete case is concerned we have decided to implement the
solution for the discrete case where the reward is a real distribution. In that case we
have decided to implement the solutions based on UBC algorithm, adversarial bandits,
Lipschitz bandits and the contextual bandits. And we have also planned to optimize the
existing code. Furthermore we also want to make this library capable of running with
many parallelizing libraries at the backend by using library independent functions.

References

1. A Tutorial on Bayesian Optimization of Expensive Cost Functions, with
Application to Active User Modeling and Hierarchical Reinforcement Learning.

Eric Brochu, Vlad M.Chopra, Nando de Freitas

 2. An introduction to the Beta-Binomial model.

COMPSCI 3016: Computational Cognitive Science Dan Navarro & Amy Perfors

 University of Adelaide

 3. Max-value Entropy Search for Efficient Bayesian Optimization

 Zi Wang, Stefanie Jegelka

 4. Predictive Entropy Search for Efficient Global Optimization of Black-box Functions

Jose Miguel Hernandez-Lobato, Mathew W Hoffman, Zoubin Ghahramani

 5. Introduction to multi arm bandits

Aleksandrs Sivikins

https://arxiv.org/find/cs/1/au:+Freitas_N/0/1/0/all/0/1

