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Introduction 
 

In probability theory multi arm bandit problem or N-arm bandit problem is a 
problem in which a gambler at a row machine have to choose which machine to play 
and how many time to play it given a limited number of turns to choose. When chosen a 
machine would give a particular amount of reward which is either deterministic or 
probabilistic. Thus to accumulate an optimal amount of reward the gambler should 
choose a an optimal solution without knowing the reward structure behind the machine.  
If stated formally the problem can be considered as a set of real distributions 

 
Where each distribution can be associated with the rewards produced by each one of 
the arms when selected. If we let the mean of those rewards to be  

 
When the gambler iteratively chooses some for  iterations arms, then the regret for 
that procedure can be measured as  

 
 

Where  

 

And   is the reward associated with a single selection. 
 
Thus the problem can be solved by trying to reduce the regret which will eventually 
maximise the total amount of reward obtained. 
 

 



 

Instead of considering these rewards as a result of a real distribution they can 
also be considered as a bernoulli distribution to tackle the problem where the reward is 
a binary variable.  
 

As the problem moved away from the discrete arms  got extended as a 
continuous variable with a K dimension the problem got extended as continuous bandit 
problem. Since the no of bandits became infinite to reduce the complexity the problem 
was formulated with deterministic rewards where the rewards of each arm were 
considered as a correlated function. As the scope of these problems narrowed down to 
the bayesian thinking they were named as bayesian optimization. They can be 
considered as a problem where we are supposed to optimize a function with certain 
bounds with as few samples as possible. 
 

 
 
Problem definition and proposed solution 
 
 
Problem  
 

Due to the large no of variation and vast amount of solutions proposed for this 
particular problem making a standard open source library for the problem has been an 
issue. Though the presence of large number of solutions has been an issue that doesn’t 
stop the problem from being important in the practical aspects. Due to the rapid 
development of machine learning the prominence of optimization has increased greater 
than before. When it comes to implementing this problem financial institutes are using 
their own exclusive libraries while the research communities are using the functions 
written by previous researchers. Thus those functions written by them are not only 
scattered but also not optimal in performance as they fail to use all the computer 
hardware available completely.  
 
Proposed Solution 
 

So we decided to make a standard library for this problem. Since the scope of 
the problem and solutions available are vast we have decided to initially make a library 
on a narrowed  scope and then continue it from there on. As far as the discrete case is 

 



 

concerned for the time being  we have decided to make a take care of the problem with 
a binary reward and to opt the one with a continuous reward out as the solutions 
proposed for them where large in number. And we decided to concentrate more on the 
continuous case. The reason for the narrowing strategy is the concern towards the 
practical need for this solutions. Due the massive improvement in reinforcement 
learning in  the recent years the problem of learning an optimum policy by the agent in 
an environment within a short period of time became an important problem. Thus the 
continuous case mentioned above became more important. Thus concentrating on that 
issue seemed more important to us. So we have decided to concentrate on the 
bayesian optimization domain in this problem. Though in theory the solutions proposed 
gave a certain time limits in complexity parallelization of the problem with help of GPUs 
seemed as an viable option as well. So we have decided to parallelize the code 
wherever it seems optimal in the process of implementing the library.  

 
 
Solutions Implemented 
 
Binary Rewards(Discrete case) : Beta Bernoulli Model 
 

Here the rewards are considered as a bernoulli random variable. Since the 
bernoulli random variable can be characterized by their mean only a prior belief on 
those means where modeled and updated as they were sampled along time. A Beta 
distribution is used to model the initial belief on those means and then the arm with the 
highest  mean is sampled and the belief is updated according to the bayes theorem. 
 
 
Continuous Bandit Problem   
 

Here three algorithms Probability of improvement, thompson sampling and 
Expected improvement are implemented with gaussian process as a surrogate function. 
Since we don’t know the function we are optimizing a belief on that function is built 
initially and then that belief is updated with every sample we obtain. Thus a faster 
optimization can be made my a good model of belief 
 

Here the belief/ Surrogate function that is used is a gaussian process. The 
advantage of a gaussian process is that it gives not only a interpolation of existing 
points but also a measure on how much uncertain it is about each prediction. 
 

 



 

 

 
As seen in the figure it give a prediction of the function(blue) and an uncertainty about a 
point in that function (purple). The prediction is given as the mean of a gaussian 
distribution while the uncertainty is given as the variance of the same distribution. 
The similar concept can also be implemented using a bayesian neural network where 
instead of obtaining a parametric model we obtain a probabilistic model from a neural 
network using a technique called dropout.  
 

 
 

 



 

Once such measurements are obtained the mean provides us a way to exploit the 
recent findings while the variance gives us an indication of the unexplored area. 
Thus functions that are formulated using the two parameters can be optimized to obtain 
a sample that will possibly be a better one. Such functions that are formed are the 
probability of improvement, expected improvement and thompson sampling 
 
Thompson Sampling 

 
The idea behind the thompson sampling is to draw a function from this surrogate 

function and optimize that function. And the sample at the optimum value and then 
update the surrogate function. Continuing this way will give us the optimum solution. 
 
 
 
 
Probability of Improvement 
 

 
 

 



 

 
In this process the probability of the next sampled point being greater than the existing 
maximum is considered as the acquisition function to to be optimized to get the new 
sample. This method is normally used when the point in the proximity of  the maximum 
is known. 
 
 
Expected Improvement 
 
Expected improvement is an idea that was proposed by Mockus in 1978 based on the 
idea of bayesian decision process.  
 
  

 
 
 
 
 
 
 
 

 



 

Design and implementation of the solution 
 
 
 
Choosing the language 

 
First of all we have to choose a programming language as the interface 

language. Given the prominence of this problem within the research community we had 
to decide a language that is popular within the community. The language also needed to 
be resourceful to tackle the issue of parallelizing which is discussed below. Thus we 
went with python 3 as our interface language for this problem 

 
Finding a code base 
 

Since it was a group project we needed to find an appropriate code base so that 
group can communicate without any issues. Moreover due to the open sourced nature 
of this project we needed a popular and easily accessible free base. Thus we have 
decide the popular github as our code base. The codes were formulated and maintained 
in a github repository. The URL for that repository is  

 
https://github.com/punk95/Multi-Arm-Bandit-Library 

 
Apart from making the code available in  a library we have also decided to make it easy 
to install as use with python from  anywhere. Thus we also choose to upload a wheel of 
the project to PYPI the largest python repository to be installed from anywhere with 
python setuptools. 
 
Parallelization of code 
 

As much as we have identified the need for the parallelization of the code we 
have also identified the need of a stable mechanism for the purpose with a continuous 
improvement along time. So it became obvious for us to go for an already stable under 
continuous development python package to do the parallelization. Though we have 
initially decided to go with the Theano package developed by University of Montreal due 
to their recent announcement on the discontinuation of the further development we have 
decided to go with a Google backed package Tensorflow for the parallelization process.  

 

https://github.com/punk95/Multi-Arm-Bandit-Library


 

 
 
Structuring the functions 
 

We wanted the package to be more flexible and easy for the user to use. Since a 
particular solution had many dependencies which have their own hyper parameters. For 
example in the continuous case where the surrogate function Gaussian process and the 
bayesian neural network had their own hyper parameters to tune such  as the learning 
rate, no of layers, kernel parameters etc. At the meanwhile the acquisition function had 
its own parameters to care about. At the meanwhile gaussian process had to lead with 
large matrices in the process.  
 

Thus to make matter easier for the surrogate function we have decided to 
implement them with the concept of object oriented programming. That way the 
surrogate functions get to use their own matrices for a prolonged use rather than to 
create them each time they are needed. With the effectiveness of object oriented 
programming it was tempting for us to make the acquisition function using the same 
methodology. But since the problem we were tackling was that of active learning we 
thought it would be computationally optimal not to create an object every time we use 
them to make a sample. Furthermore they didn’t have any notably large amount of 
dependent data. Thus it made us to go with the usage of normal functions while 
providing options to tune the surrogate functions behind with through these functional 
argument. 

 
 
 
 
Parallelization 
 

When it came to parallelizing as already decided we went an existing library 
tensorflow. But the only cost with a library is that it is a static library. That is all the 
structures of the algorithm must be defined beforehand  for it to optimize the algorithm. 
Thus though it made a heavy process run faster with a good gpu it had an issue of 
creating significant amount of overhead beforehand. Thus it made sense for us to use 
the parallelization for the surrogate functions which are going to take long time to 
produce the results and going to stay in use for a while. Meanwhile using parallelization 
for the iterative light weighted functions such as acquisition ones seemed like an 

 



 

computationally expensive option rather than an optimal one. So we have decided to 
make those functions with sequential programming techniques. 
 
 
Programming Dependencies 
 

As mentioned above for the purpose of parallelization we used tensorflow library. 
Furthermore for the purpose of handling arrays and random numbers efficiently we used 
a frequently used package  numpy in our implementation. In addition to that we had the 
problem of optimizing the acquisition function with the luxury of having more 
inexpensive sampling at each iteration to get the next sample point. Thus we needed a 
good package to do the traditional optimization. Thus we have used the renowned scipy 
to get these necessary functions for the optimization. Thus in total three packages 
tensorflow, scipy, and numpy along with their own dependencies were used to 
implement this package.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 
Results 
 
Beta Bernoulli model 
 
 

 
 



 

 
 
 

 
 
Figure :​​  ​The results produced by Beta Bernoulli model when 5 arms with binary 
rewards were given 

 



 

 
 
 
 
Expected Improvement with Gaussian Process as a surrogate 
function 
 
 

 
 
 

Figure : ​​Six hump Camel Back Function 

 



 

 

 



 

 
 
Figure  : ​​Results produced by Expected improvement when it is used to optimize a six 
hump camel back function.  Here red points indicate the actual sampled function while 
the blue curves on the top denote the acquisition function optimized for a new sample 
 
 
 
 

 



 

 
 
Probability of  Improvement with Gaussian Process as a surrogate 
function 
 

 
Figure :​​ ​​Results produced by Probability of improvement method when point near the 
maximum is known. Here red points indicate the actual sampled function while the blue 
curves on the top denote the acquisition function optimized for a new sample 
 

 



 

 
 

 
 
Figure : ​​Results produced by a Probability of Improvement when a point near the 
actual maximum is unknown.  Here red points indicate the actual sampled function while 
the blue curves on the top denote the acquisition function optimized for a new sample 
 
 
 
 

 



 

Future Works 
 

Thus we have concluded our project with the discrete case where the rewards 
are binary and the continuous case where the gaussian process is used as a surrogate 
function. But as said earlier the set of solutions available for this problem is vast and we 
have only achieved a small feat in our vision. Thus we have decided to publish the 
product made so far and to continue our works aftermath, updating the product in the 
process. As far as the continuous case is concerned we have decided to first develop 
the same set of algorithms to work with the already formulated bayesian neural network. 
The we have decided to make an implementation of the recent information theory base 
methods such as entropy search, predictive entropy search and max value entropy 
search.  

As far as the discrete case is concerned we have decided to implement the 
solution for the discrete case where the reward is a real distribution. In that case we 
have decided to implement the solutions based on UBC algorithm, adversarial bandits, 
Lipschitz bandits and the contextual bandits. And we have also planned to optimize the 
existing code. Furthermore we also want to make this library capable of running with 
many parallelizing libraries at the backend by using library independent functions. 
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